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ABSTRACT

‘The purpose of this paper is to introduce a new spline approxi-
mation scheme for retarded functional differential equations. The
special feature of this approximation scheme is that it preserves
the product space structure of retarded systems and approximates the
adjoint semigroup in a strong sense. These facts guarantee the con-
vergence of the solution operators to the differential Riccati equa~
tion in a strong sense. Numerical findings indicate a significant
improvement in the convergence behaviour over both the averaging and
the previous spline approximation scheme.

Furthermore, controllability and observability criteria are
given for the approximating systems, which are shown to be stable

respectively stabilizable for sufficiently large N provided that
the underlying retarded system has the same property.
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SIGNIFICANCE AND EXPLANATION

For a large number of problems in engineering and biology

appropriate mathematical models involve functional differential

equations (FDE) which in turn can be reformulated as ordinary

differential equations (ODE) in infinite dimensional state spaces.

This paper is concerned with the approximation of these equations
by a sequence of finite dimensional ODEs. A particular emphasis |

is placed on the approximate solution of the linear guadratic

optimal control problem. The approximation scheme is based upon

a projection of the underlying function space onto a spline sub-
space. The special feature of this scheme is that it preserves

to product space structure of the FDE and approximates the optimal
feedback law on the strong operator topology. A number of numerical
examples indicate a significant improvement in the convergence

behaviour over previously developed approximation schemes for FDEs.

The responsibility for the wording and views expressed in this
descriptive summary lies with MRC, and not with the authors of this
report.
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SPLINE APPROXIMATION FOR RETARDED !
SYSTEMS AND THE RICCATI EQUATION :

F. Kappell'2 and D. Salamon2'3

1. Introduction

In this paper we introduce a new spline approximation scheme
for linear time invariant retarded functional differential
equations (RFDEs) and establish a number of convergence results
and structural properties for this scheme. In particular we show
that the approximate feedback law and the solution of the operator
Riccati equation, associated with the linear quadratic control
problem for this class of systems, converge in the uniform operator
topology.

The first step of the general approach is to transform the RFDE

x(t) = Lx, + Bju(t), y(t) = Cyx(t) (1.1)

t

into an abstract Cauchy problem of the form

4 x(t) = Ax(t) + Bu(t), y(£) = Cx(t) (1.2)
in the Hilbert space X = R® «x Lzl-h,OﬂRn], h > 0, where A is the
infinitesimal generator of the strongly continuous semigroup S(t)
which is associated with the uncontrolled delay equation. For
systems of the form (1.2) there exists a gereral theory of the
linear quadratic control problem of minimizing the cost functional
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T 2 2
J(u) =(!) Liy(e)1€ + Ju(t)]®ldt (1.3)

(see e.g. [9), [15]),(20]). The optimal control can be characterized 1
as a feedback law which is determined by an operator satisfying

the differential Riccati equation (in the case T < =) respectively
the algebraic Riccati equation (in the case T = ). These operator
Riccati equations involve both the original generator A and its
adjoint operator A*. Therefore, in order to approximate the feedback |
law and the Riccati operator in the strong operator topology, we ;

have to approximate both semigroups S(t) and S*(t) in the strong b
operator topology (see [21]).

For the approximation of the semigroups we use a Galerkin |
type scheme, i.e. we define finite dimensional subspaces XN of X l
and operators AN on XN which generate semigroups SN(t) on XN. The !
classical idea is to choose xN c dom A and define AN . pNApN where |
pN is the orthogonal projection of X onto XN. Under appropriate
consistency and stability hypotheses the convergence of Sn(t) to
S(t) in the strong operator topology follows. ’

These ideas have been used by Banks and Kappel (7] for the
development of a spline approximation scheme for RFDEs and have
then been applied to problems of optimal control and parameter
identification e.g. in (3], (6], (8], [26]. In particular, Kunisch
[26] has estabilished weak convergence results for the soluticn
operators of the differential Riccati equations. Numerical findings
in [8]) indicate that these operators indeed do not converge strongly
for the spline scheme developed in (7]. Furthermore, it can
actually be shown that the adjoint semigroups SN(t)‘ cannot converge
strongly in that scheme. The main reason for this is that the
subspace xN in [7) has been chosen to be contained in the domain
of A which is different from the domain of A*.

In order to overcome this unequal treatment of S(t) and S$*(t),
our first idea was to introduce two spline subspaces XN c dom A and
VF c dom A* and to make use of the non orthogonal projections of X
onto XN along (VN)l. Unfortunately, we found out after lots of

2=




calculations that these projection operators did not converge
strongly to the identity. The second (successful) idea was then
to enlarge the subspace XN such that it is neither contained in
dom A nor in dom A*, but contains sufficiently many elements of
both domains. Of course, in this situation the approximating

i
operators can no longer be defined by AN = pNApN but have to be

defined directly instead (for details see Section 4.3). As a

result we are able to establish the desired convergence of the
solution operators of the Riccati equation in the uniform operator
topology for the finite time horizon problem. Despite the fact that
in the case of the infinite time horizon problem our scheme always
did converge numerically, we were not able to prove this convergence
following the approach presented in [21). The reason is that we

do not have the uniform (with respect to N) exponential stability

of the approximating semigroups for our scheme (compare Section 5.4).

In this respect the spline approximation scheme differs from the
averaging approximation scheme in (4] for which the uniform
exponential stability property has been established in (37].

In two preliminary sections we collect some basic facts from
the state space and control theory of retarded systems (Section 2)
and give a short survey on the theory of the linear quadratic
optimal control problem for abstract systems in Hilbert space and
for RFDEs (Section 3). In Section 4.1 we present a general
approximétion scheme for abstract Cauchy problems in Banach space.
In Section 4.2 we consider the problem of approximating the
feedback law for the finite time horizon problem following the
approach given in Gibson in {21). The main part of this paper is
Section 4.3 where we develop a special spline scheme and prove
convergence results along the general ideas given in Section 4.1
and 4.2. We also give the explicit formulae for the matrices which
are necessary for the implementation of our scheme. This scheme

has remarkable qualitative properties which are presented in

Section 5. First of all, the product space structure of the under-
lying RFDE (1.1) is preserved and there is a structural operator
playing an important role for the approximating systems (Section 5.1).




Secondly, there exist convenient criteria for stability,

controllability, observability, stabilizability and detectability ‘
of the approximating systems (Section 5.2). The main results of

Section 5 are that the stability, stabilizability or detectability
of the delay system imply the same properties for the
approximating systems provided that N is sufficiently large and
that the approximating systems cannot be stable in a unitorm

sense with respect to N (Section 5.4).

Finally, in Section 6 we present some of the many numerical
calculations in order to demonstrate the good behaviour of our
scheme and the significant improvement in the convergence property
-over both the averaging approximation scheme (4], [21) and the
spline scheme in (7]}, (8]. ‘




T

2. State space theory for linear hereditary control systems

In the following we define the type of hereditary control
systems to be considered in this paper (Section 2.1) and collect
some well known facts on the state space description of retarded
functional differential equations (RFDEs) in terms of semigroups
and evolution equations (Section 2.2). Then we outline the basic
duality relations (Section 2.3) and briefly review some of the
existing results on the structural and control properties of
hereditary control systems (Section 2.4).

2.1. Linear hereditary control systems

We consider the linear hereditary control system

x(t)

th + Bou(t), t >0, (2.1:1)

y(t) = Cyx(t), : (2.152)

where x(t) e]Rn, u(t) € IR‘, y(t) € R"™ and X, is defined by
xt(s) = x(t+s) for -h < 8 < 0, h > 0. Correspondingly B0 and C0
are real matrices of appropriate dimensions and L is a bounded
linear functional C(-h,O;‘an) +R" given by

0
L¢ = f (dn(t)]e(r)

E Aj‘('h ) + I A°1(T>0(T)dfs ¢ € C( h OJR )’

where 0 = h, RTINS hy, = hand A, e R"™, j = 0,...,p, as well
as A ( ) € L (-h,0;RN*N), Clearly, the function n: R + RV? of
bounded variation is of -the form

n(e) = ~Agx(ou 0)(¥) - § Aj (=ayeh; (1)

0
-J Am(o)do, Tt €R,
T

5=




where X1 denotes the characteristic runctlon of the 1nter‘a1 I.

A solution of (2.131) is a function x(-) € Lloc( -h, «;R") which

is absolutely continuous with Lz-derivative on every compact
interval (0,T], T > 0, and satisfies (2.1;1) for almost all t > O. .
It is well known that (2.1;1) admits a unlque solutlon

x(t) = x(t;¢,u) for every input u(+) € Lloc(o «;R*) and every
initial condition

x(0) = %, x(7) = ¢¥(x), -h <t <O, (2.2)
where ¢ = (4°,¢1) € M2 = R™ x L2(-h,0R"™). Moreover, x(-;6é,u)
depends continuously on ¢ and u on compact intervals, i.e. for
any T > 0 there exists a K > 0 such that

sup [x(t;e,u)| < K(l[ell + Hu||2 )s
0<t<T L°(0,TsR")

where || ¢]| = (|¢ol2 + |¢ for ¢ € Mz(see e.g. [13],(19]).

1|2 )1/2
L2

The fundamental solution of (2.1;1) will be denoted by X(t) and

is the nxn' matrix valued solution of (2.1;1) which corresgonds to

u =0 and X(0) = I, X(t) = 0 for -h < v < 0. The Laplace-transform

of X(-) is given by A-l(x), where

A(2) = AI - L(e*°I)

.0
AL - Ay oo
jso 9 ~h

A01(t)eltd1, e ¢,

is the characteristic matrix of (2.1;1). Again it is well known
that the forced motion of (2.1;1) (in case ¢ = 0) can be written
as

t
x(t;0,u) = | X(t-r)Bou(r)dt, t > 0. (2.3) ]
0




2.2, Semigroups and state space description

In the theory of RFDEs two state space concepts are of importance

which are actually dual to each other. Existence, uniqueness and

continuous dependence results for solutions of RFDEs have motivated
the ":lassical" definition of the state of system (2.1) to be the

pair

w(t) = (x(t),xt) € Mz, (2.4)

which completely describes the past history of the solution at
time t > 0. The evolution of this state is governed by the
variation-of-constants formula

t

w(t) = S(t)¢ + [ S(t-s)Bu(s)ds, t > 0, (2.5)
0

which is the infinite dimensional version of (2.3). The input

operator B: ]R” > MZ is given by

"‘Bu = (Bou,O) € M2, u e]R!',

and the semigroup S(+) corresponds to the free motion of the
system, i.e. S(t): M2 -+ M2, t >0, is defined by

S(t)¢ = (x(£:6,0),x,(4,0)), t >0, ¢ ¢ M°,

The infinitesimal generator of S(-) is given by

dom A = {¢ € M2|¢1 € W1’2, ¢0 = ¢1(0)},

. (2.6)
Ad ==(L¢13¢1):

where w1’2

denotes the Sobolev space wl’z(-h,OQR“). The function
w(t) as defined in (2.5) is a mild solution of the abstract
system




w(t) = Aw(t) + Bu(t),

(z)

y(t) = Cw(t), w(0) = 4.

The output operator C: M2 +R™ is defined by C¢ = Cooo, ¢ € Mz.

Analogously we introduce the semigroup ST(o) on M2 which
corresponds to the transposed system

x(6) = 1Tx, + CTy(t), (2.751)

u(t) ng(t). (2.7:32)

The infinitesimal generator of ST(-) is denoted by AT' Corresponding
to system (2.7) we have the abstract sytem

w(t)

ATw(t) + C*y(t)

u(t) B*w(t).

Note, that ST(') is not the adjoint semigroup to S(:). The duality
relation between systems (2.1) and (2.7) involves another state
concept which is due to Miller [31].

2.3. The dual state concept

Another state concept for system (2.1) - again in the state
space M2 - can be obtained by viewing the Lz-component of the
state introduced in the previous section as an additional
forcing term instead as an initial function. To this end we rewrite
system (2.1) in the following way

0
x(t) = [ [dn(x)1x(t+1) + Bou(t) + fi(-t),
-t , (2.8;1)
x(0) = fo, .
y(t) = Cox(t). (2.8;2)




vwhere the pair f = (r°,f1) € M2 is given by
f0 - 00’
1 _ 1
£7(o) = [ (dn(1)]1¢ (1=0) : (2.9)
-h
= § A.¢1(-h.-o) + } A01(1)¢1(1-o)d1
j=1 J J -h

(we define ¢1(1) =0 for t ¢ [~h,0]). Now the initial state of
system (2.8) is given by f € Ma. Correspondingly the state at
time t > 0 is the pair

z(t) = (x(t),x°) e M2, (2.10)

where xt € L2(-h,OﬂRn) is defined by

x* (o)

g
| (dn(t)1x(t+1-0) + £1(o-t)
o-t | (2.11)

Here for any solution x(t) of (2.8;1) we define xt(T) = 0 if
t>0or t < ~t. The state z2(t) determines the future behavior
of the solution from t > 0 on, i.e. x(t+s) = 0 fcr s > 0 if and
only if z(t) = 0.

The evolution of z(t) is governed by the following variation-
of-constants formula

t _
z2(t) = SA(t)f + / S$(t-s)Bu(s)ds, t > O, (2.12)
0

which means that z(t) is a mild solution of the system

L z(t)

Afz(t) + Bu(t), =z(0) = f,
(z2)
y(t) T

Cz(t)

o
jfi ijt(-hj-o) + It A01(r)x(t+r-o)dt + fl(o-t).
- o-




—

(l10),(14],(18]). Note that (zi) is precisely the adjoint rystem
to (:T) which corresponds to the transposed system (2.7) ir terms
of the original state concept. The operator A% is the infinitesimal
generator of the semigroup Si(-) and can be described expl cli<ly

in the following way (see e.g. [18]):

Lemma 2.1. The operator A% is given by

i 2,,1 0 1,2 1, .\ _ , 0
dom A% = {f e M|f + le AL x[_h,_hj]ew 'S, £7(-n) = ALY,
(a3e1° = £(0) + ay 2P,

1 Pl 0
(ape1t(e) = ag, (0)e% - Lieleo) 521 A%, -, NEIN

The relation between the two state concepts can be described by
the socalled structural operator

F: M2 » M°

which maps every initial state ¢ € M2 of system (I) to the
corresponding initial state

F¢ =f ¢ M2

of system (z;) which is given by (2.9). This operator has been
introduced by Bernier and Manitius {(10). The adjoint operator F*
is of the same form as F but with the transposed matrices. This
means that F* plays the same role for the description of the
transposed system (2.7) as F does for the original system (2.1).

The operator F has the following important properties (10],
(18]:

e e e s = - ————

[T TS W e RS T TS




Theorem 2.2.
(1) FS(t) = Sa(L)F, t > 0.

(ii) If ¢ € dom A, then F¢ ¢ dom Ai and

A‘

TFQ = FA¢.

(iii) FB = B and CF = C.

2.4, Stability, stabilizability and controllability

System (2.1) is said to be stable if every solution x(t) of
the free system (i.e. u(t) = 0) tends to zero as t goes to
infinity. Equivalently, the semigroup S(:) is exponentially stable,

i.e.

wug = %iﬁ % 1n |{S(t)|| = sup {Rex | 2 € o(A)} < O

(see for instance [23]). The spectrum of A is given by o(A) =
{r» € ¢|det a(2) = 0). Note, that o(A%) = o(A). Clearly, the
stability of system (2.1) is equivalent to the stability of the
transposed systam (2.7) and to the stability of system (2.8).

The control system (2.1) is said to be stabilizable if there
exists a control law

u(t) K(x(t),xt)

(2.13)

0
K,x(t) + [ K, (t)x(t+r)dx,
0 -H 3
where K, E:mlxn, Kl(-) € L2(-h,OﬂR2”n), such that the closed loop
system (2.1), (2.13) is stable. We have the following important

characterization (see (33],([351]).

£\,




Theorem 2.3. The following statements are equivalent:

(i) System (2.1) is stabilizable.

(ii) There exists a K € L(M2;Rz) such that the operator A + BK
generates an exponentially stable Co-semigroup.

(iii) There exists a K% € L(MZJRQ) such that the operator Aé-ﬁBKi

generates an exponentially stable semigroup.
(iv) rank [A(X),Bol = n for all A € ¢ with Rex > 0.

The dual result is the following (see e.g. [10] or [35],(36]):

Theorem 2.4. The following statements are equivalent:
(i) There exists a H € LGRm,MZ) such that the operator A+ HC
generates an exponentially stable semigroup.

(ii) There exists a H% € LGRm,Mz) such that the operator A%d-H%C

generates an exponentially stable semigroup.
A(A)]

(iii) rank [
Co

= n for all i e ¢ with Rex > 0.

System(2.1) is called detectable if the statements of the previous
theorem are satisfied. A detailed discussion of the perturbed
semigroups and the duality relations between feedback stabilization
and dynamic observation in the product space framework can be
found in (35].

System (2.1) is called approximately contaollable if the |
reachable subspace

G

s e O s

t
R = ([ S(t-s)Bu(s)ds |t > 0, u(+) € Lz(o,taﬁl)}
0

in dense in Mz; it is called staictly obseavable if for all
solutions of (2.1) y(t) = 0, t > 0, implies x(t) = 0, t > =h.

These two properties have been characterized by Manitius (271,(28]
as follows.




Theorem 2.5. Let AOl(') 2 0. Then system (2.1) is approximately
controllable if and only if the following conditions are
satisfied:

rank [A(x),Bol = n for all A ¢ ¢,
rank (Ap,Bo] = n.

System (2.1) is strictly observable if and only if the following
conditions are satisfied:

A(r)
o)

rank ( = n for all 1 € ¢,

a 2 n.
rank Ap

EEEEE—— T S P TIRSISTr————




3. The linear quadratic control problem

3.1. Control systems in Hilbert spaces

Let us first deal with general linear control systems in
Hilbert spaces X, U and Y described by

x(t)

"

Ax(t) + Bu(t), x(0) = Xqs

(3.1)
Cx(t). |

"

y(t)

We assume that B € L(U,X), C € L(X,Y) and that A is the |
infinitesimal generator of a Co-semigroup S(t) on X. System (3.1) l
will be unterstood in the sense of mild solutions, i.e. the i
trajectories of the system are given by

t
x(t) = S(t)x, + [ S(t-s)Bu(s)ds, t >0, (3.2)
0
. 2 .
for any X, € X and any input u(-) € Lloc(O,w.U).

Let R; U=+ Uand G: X + X be selfadjoint linear operators
satisfying

<x,Gx> > 0 for all x € X
and

<u,Ru> e|h1H2 for all u e U

v

with some ¢ > 0. In this section we look at the control problem
of minimizing the cost functional

J(u) = <x(T),6x(T)> +
(3.3) :

T
s [ UNex(e) ]} + <ult),Rult)>]at,
0

=14~




where x(t) is given by (3.2) and T > 0 is a fixed final time.
The following result has been proved in [15]):

Theorem 3.1. For any X, € X there exists a unique control
function u(-+) € L2(0,T;U) which minimizes the cost functional
(3.3) under the contraint (3.2). The optimal control is of
feedback form and is given by

T(t) = -R™1B*P()X(L), t > 0 (3.4)

where x(t) is the mild solution of the Cauchy problem

X = (A-BR™IB*P(t))x, x(0) = Xy, and t » P(t) e L(X) is the unique
operator valued function on [0,T] with the following properties:
(1) P(t) is positive semidefinite for every t € [0,T].

(ii) The function t =+ P(t)x is continuous on [(0,T] for every x € X.

(iii) The function t + <x,P(t)y is continously differentiable on
{0,T] for all x,y € dom A and satisfies the Riccati
differential equation

-% <y,P(t)x> + <Ay,P(t)x> + <P(t)y,Ax>

- <g,P(t)BR'1B*P(t)xf + <Cy,Cx> = 0, (3.5;31)
<y,P(T)x> = <y,Gx>. (3.5;2)
Moreover, the optimal cost is given by
J(u) = <xgsP(0)xy>.

It is easy to see (ef. [20)) that equations (3.5) can be
written in the form

P(t)x = S*(T-t)GS(T~t)x

T (3.6)
+  $*(1-£)(C*C - P(x)BR™IB*P(1)18(r-t)xdr,
t

-]l85~




o
1A
'
A

< T, x € X, or respectively,

P(t)x = S*(T=-t)Ge(T,t)x

T
+ [ S*(xt-t)C*Ce(r,t)xdr,
t

(3.7)

o
(I
ct
A

< T, x € X, where ¢(1,t) is the evolution operator given by

T
o(t,t)x = S(1-t)x - [ S(1-0)BR™1B*P(c)e(0,t)xda,

t :
(3.8)
0<t <Tt<T, x € X,

Let us now consider the problem of minimizing the cost
functional

J(u) = é[lICx(t)Hz + <u(t),Ru(t)>)dt (3.9)

- where again x(t) is given by (3.2). For this situation the
following result has been proved (see [15),[{16],(41]; further
references can be found in the survey paper [ 9]):

Theorem 3.2. a) The following statements are equivalent:

(i) For any X € X there exists an input u(.) e Lz(o,-;U) such
that the corresponding cost J(u) given by (3.9) and (3.2)
is finite.

(ii) There exists a positive semidefinite operator P € L(X)
satisfying the algebraic Riccati operator equation

<Ay,Px> + <Py,Ax> + <Cy,Cx>

-1 (3010)
- <Py,BR™1B*Px> = 0

for all x, Y € dom A,
b) If the statements under a) are valid, then there exists a ]
unique optimal control u(t) which is given by the feedback law 7
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Ut) = - R7Ig+Px(t), ¢t > 0, (3.11)

where X(t) is the mild solution of the Cauchy problem i
x = (A-BR™IB*P)x, x(0) = xy» and P is the minimal solution '
of (3.10). Moreover, the optimal cost is given by i

J(u) = <xo,Px

0" |
¢) Suppose that the statements under a) are satisfied and let P )
be the minimal positive semidefinite solution of (3.10). Moreover,
let PT(t), 0 <t < T, be the unique positive semidefinite solution
of (3.5;1) with PT(T) = 0. Then P is the strong limit of PT(O) as

T goes to infinity.

d) Suppose that there exists some H € L(Y,X) such that the operator
A + HC generates an exponentially stable semigroup. Then there exists
at most one positive semidefinite solution of (3.10). Moreover,

if such a solution exists, then the closed loop semigroup generated
by A-BR 18%P is exponentially stable.

Finally note that any solution P of the algebraic Riccati equation
is a stationary solution of the Riccati differential equation. Hence
it follows from (3.6), (3.7) and (3.8) with G = P that the algebraic
Riccati equation (3.10) is equivalent to

Px = S*(t)PS(t)x
t -1
+ [ 8*(1)IC*C - PBR "B*P]|S(7)xdr,
0

t >0, x € X, or, respectively, to
t
Px = S‘(t)Psp(t)x + | S‘(T)C'CSP(T)xdT, (3.12)
0

t 20, x € X, where Sp(-) is the closed loop semigroup generated
by A - BR™1g+p,
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3,2. Applications to hereditary systems

Let us first apply Theorem 3.1 to the systems (I) and (25;
which are associated to the system (2.1) in terms of the two
state concepts introduced in Section 2. The cost functional for
system (2.1) is given by

J(u) = X(T;¢,u)TGox(T;¢,u)

I , 2 T
+ ][llcox(t,¢,u)ﬂ + u(t) Ru(t)ldt,
0

where R emle is positive definite and GO eR™M M ig positive semidefinite.
The operator G: M2 - M2 is defined by G¢ = (Gooo,o), ¢ € M2. Then

the cost functional for systems (I) and (z%) is given by (3.3)

(with G = G, € = C and R = R, of course). According to Theorem 3.1
there exist two unique, positive semidefinite, strongly continuous
families N(+) and P(+) of operators in L(Mz) which satisfy the

following Riccati differential equations:

iid_t <P ,(t)é> + <Ay,N(t)é> + <n(t)y,Ad>

(3.14)
- <N(t)y,BR™IB*n(t)¢> + <Cy,Co> = O,
n(T) = G,
¢,y €¢ dom A, 0 <t < T, and, respectively,
g% <@P(t)f> + <Atg,P(£)f> + <P(£)g,Anl>
(3.15)

- <P(t)g,BP IB*P(t)f> + <Cg,Cf> = O,
P(T) = G,

f,g € dom A%, 0 <t < T,

The operators N(t) and P(t) have the following properties:
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Proposition 3.3. a) n(t) = F*P(t)F, 0 <t < T.

b) range P(t) c dom Aqp for every t < T-h. If G, = 0, then range
P(t) c dom AT for every t € {0,T]. Moreover, in this case the
function t + P(t)f is continuously differentiable on [0,T)
for every f € dom Aé and satisfies

d
L p(t)f + AP(t)f + P(t)Asf -
dat T T (3.16)

- P(t)BR™IB*P(t)f + C*Cf = O,

P(T) = 0.

¢) range N(t) c dom A* for every t': T-h. If Go = 0, then

range N(t) ¢ dom A* for every t € [0,T]. Moreover, in this case
the function t + N(t)¢ for every ¢ ¢ dom A is continuously
differentiable on [0,T]) and satisfies

é% n(t)e + A*m(t)¢ - N(t)A¢ -
(3.17)

- M(t)BR™IB*n(t)¢ + C*Co = O,
n(r) = 0.

Proof. a) has been shown in [17]. However, it also follows
immediately from Theorem 2.2 that n(t) = F*P(t)F defines a
positive semidefinite solution of (3.14) if P(t) is a positive
semidefinite solution of (3.15).

b) follows from (3.7) and (3.8) with P(t) = P(t), S(t) = Si(t).
B =B, C=C and R= R. One has to observe the following facts:
(1) range So(t) c dom A for all t > h.

T
t
(11) é Sp(8)C*u(s)ds e dom Ay for all u e L2(0,TRY).

(iii) If z(s,t) € M? is continuous on {(s,t) |0 <t <s <T)

and continuously differentiable in the second variable,
then the function

«19-
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e

T
w(t) = J Sp(s-t)z(s,t)ds, 0 <t <T,
t

is continuously differentiable and satisfies

L w(t) = - A w(t) + ? S.(t-8) == z(s,t)ds - z(t,t)
at T i ot gt 218»tJas 2107

¢) follows from a), b) and Theorem 2.2 o

Let us now look at the structure of the operators n(t) and P(t).
Due to the product space structure of the state space M2 we can

write

noo(t) n01(t) ) Poo(t) P01(t)
H(t) = 9 P(t) = ?

(t) n,.(t) Pio(t) Pll(t)

Ti0 11

where noo(t), Poo(t) are selfadjoint operators R" + R" which can
be represented by symmetric matrices and nll(t), Pil(t) are
selfadjoint operators L2 + L2. The operators nio(t)’ Plo(t) can
be represented by matrix-valued functions "1o(t")’ °10(t,-) €
Lz(-h,OﬂRnxn). The adjoint operators n01(t) z n;o(t) and P01(t) =

Pio(t) from L2 + R"” are given by

0 ¢ 0 ¢
n01(t)¢ = _{ nlo(c,r)¢(r)d7, P01(t)¢ = _g Pio(t,t)o(t)dt,
¢ € L2.

We are mainly interested in the matrices noo(t) and Hlo(t,T) which
determine the optimal feedback law
-1.T

0
By Mgg(®)x(t) + Mo (6, )x(tsr)de]  (3.18)

u(t) = - R 0

for system (2.1). Recall that B* maps ¢ € M2 to Bg¢° eimn. By

Proposition 3.3, a) we have the following relations between n(t)
and P(t):

-20-
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noo(t) = Poo(t), (3.19)

. T k- T.T . ;
Il1°(t.,o) s j§1 AjPio(t, hj a) +-£A01(1’)P10(t,1 og)dr. ’

Hence the control law (3.18) can be written in the form i

1.7 0 o lj
u(t) = - R Bo[Poo(t)x(t) + 551 -g.Pio(t,-hj-o)ij(t+o)dc ‘
J
00 o (3.20) ‘
* L Pyptestmadhg, (x(tro)dads.

Finally, note that P .(t,) e wir2(n, 0 R"™™) and Poo(t) = Pyg(t,0)

for t < T-h for all t € (0,T] provided that Go = 0 (Proposition 3.3,b)). :
For the rest of this section we assume that system (2.1) is %

stabilizable and detectable, so that systems (I) and (2,5) satisfy |

the assumptions of Theorem 3.2. Hence there exist positive semi-

definite operators NI, P e L(MZ) satisfying the algebraic Riccati

equations

1

A*n¢ + MA¢ - NBR “B*N¢ + C*C¢ = O, (3.21)

¢ € dom A, and, respectively,

AGPf + PARS - PBR™1B*Pr + c*cr = o, (3.22)

T
f € dom A,E. The equations can be written in this form since every
solution P of (3.10) maps dom A into dom A*. The relation between
N and P is as follows:

Proposition 3.4, a) m = F*PF.
b) range Pc dom AT
¢) range llc dom A*,

2]~




Proof. Statement a) follows again from the fact that for any
solution P of (3.22) the operator n = F*PF defines a solution of
(3.21) (see also [40] ). Moreover, b) follows from (3.12)

(for t > h) and c¢) follows from a), b) and Theorem 2.2 ©

Again the operators 1 and P can be written in block form

Too  To1 Poo  Foa
n= £y P = »
[ Mo M1 Pio P11
where I = I* and P = P*_  map L2 into R", By Proposition 3.4
01 10 1 201 10
we have Pio(o) e W ? (-h,omnxn) and
Too = Poo = P10¢0)s (3.23)
n, (o) = § ATP (-h,-0) + ? AT (¢)P,.(r-0)dr
10 jEq 971007 -h 01 10 .

Hence the optimal feedback law is of the form

u(t) 1

R'iB*H(x(t),xt) = - RTIB*PF(x(t),x,)

R™IBY (n_ x(t) o i (t)x(t+t)dr]  (3.24)
0 Hoox -g 10 t)x(t+1)dr 3.

1By 1P, ,(0)x(t) + .E

Jj=1 -

T
P10(~hj-o)ij(t+o)do

? ? T (1) J
+ P t-0)A t)x(t+o0)dodr].
AT 01

T—0

Finally note that the closed loop system (2.1), (3.24) is stable
(Theorem 3.2).




4, Approximation

§.1. A general scheme

In this section we present a general approximation scheme for
linear abstract Cauchy problems restricting ourselves to a
situationwhich is of sufficient generality for our purposes.

Let X be a real Banach space with norm ||<|| . Furthermore
let A be the infinitesimal generator of the Co-semigroup
S(t), t > 0, on X, It is well known (see for instance [30],
p. 278, or (32}, p. 100) that x(t) = S(t)xo for any X, € dom A
is the unique strong solution of the abstract Cauchy problem

x(t)

#H

Ax(t), ¢

v

o,
(4.1)
x(0)

xO.

By a strong soclution x(t) x(t;xo) of (4.1) we mean a continuously
differentiable function x: {0O,») -+ X such that x(t) € dom A for

t > 0 and (4.1) is satisfied. There exist constants M > 1 and

w € R such that

[S¢e)ll < Me“t, ¢ > 0.

Our goal is to approximate the trajectories S(t)xo, X € X,
by sequences of solutions to Cauchy problems in finite dimensional
spaces. It is a standard idea to choose a sequence {XN} of finite
dimensional subspaces of X with corresponding projections

pN: X + XN, N =1,2,... ,

and to define (in an appropriate way) a sequence {AN} of linear
operators

*x Y N = 1,2,00- .
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With AN and x, € X we associate the Cauchy problem

0

Nty = ANV, v > 0

(4.2)
pNx0:

N (0)

on XN. We extend the definition of ANto all of X by ANx =z AN

PNl
and define the C.-semigroup SN(t), t > 0, on X by

0
N N

N - At ATt N _ N

S (t)xo = e Xg =€ P Xyt Xg = P Xgs t >0, X, € X.

The following hypotheses will be used in order to guarantee

the desired convergence SN(t)pNx0 + S(t)xo:

(H1) 1lim pNx = x for all x € X,

N+o

(H2) There exist constants M > 1 and & € R such that

1SN ceyx]l < el

for all t > 0, x € XN and N = 1,2,... .

(H3) There exists a dense subset D ¢ dom A which is invariant
with respect to S(t), t > 0, such that
(i) 1lim ANpNx = Ax for all x € D

N+«

and

(ii) for any x € D there exists a function m(+,x) € Lioc(o,-ﬂR)
such that

||ANPN3(t)X||: m(t;x) a.e. on [0,=)

for all N.

Hypothesis (H2) is equivalent to

=24~
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(H2*) For any N there exists a norm H-HN on XV such that

(i) for some constant M > 1

- N
Wxll < llxlly < Milell, x e X7, N = 1,2,...,

and
(ii) for some constant w € R all operators AN- wI are
dissipative on (XN,il--HN), i.e. (ef. (32), Thm., 4.2)

NAN-uD) Al > (- )] iy
for a1l x € XN and all > &.
If (H2) is satisfied we define

N

N -w
[l = sup {Is"(t)xll “t, xe X', N=1,2,..
>

It is easy to see thatlldIN is a norm on X" with
- N -
Wxll < tiadly < Mlixll, x e X7, N = 1,2,...
Moreover for the operator norm corresponding to H-HN we have

IISN(t)Ih <e't, t>0, N=1,2,....

Then (H2*,ii) is an immediate consequence (cf.[32], Thm. 4.3).

Conversely, if (H2*) is valid then by (H2*,ii) we get
HSN(t)I& <e'%, t>0, N=1,2,... .

Using (H2*,i) we immediately get (H2).

=25~
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‘We note some consequences of (H1) = (H3) which will be useful
for the proof or our convergence result:
a) The projections pN are uniformly bounded, i.e. there exists

a constant y > 0 such that

N
Nl < v, N=1,2,... .

b) If x: {0,T)] - X, T > 0, is continuous then

lim pNx(t) x(t)

N+e
uniformly for t e (0,T].

Assertion a) follows from the uniform boundedness principle.
If b) were not true, we could deduce the existence of a monotone
sequence Nk + «» and a sequence {t } in {0,T] with tk -+ to € [6 T)
such that ||kax(t ) = x(t )H > a > 0 for all k. 031ng continuity

of X we 1mmed1ate1y would get a contradiction to p x(t ) » x(t ).

Theorem 4.1. Let (H1) ~ (H3) be satisfied for the sequences XN,
N N
p, A ,N=1,2,... . Then for all x

0 € X
N
lim eA tpNxo = S(t)xo (4.3)
Ne+e=
uniformly for t in bounded intervals.
Proof. We first choose xo € D and put

aNee) = pNxce) - M), t >0, N =1,2...,

where x(t) = x(t,x ) and x (t) X (t,pNx ) are the solutlons of

(4.1) and (4.2), respectlvely. Since the derlvatlve of A (t)
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exists for all t > 0, the left-hand derivative %EIIAN(t)”H
exists for all t > 0 and is given by ({30}, p. 228)

g-gllAN(t)||N= t_(AN(t),ZN(t)), t >0,

where t_(x,y) = lim Z(llx+ gl ~llxll; ).
>0~

Using (4.1), (4.2) and the estimates r-(x,y1+ yz) < t_(x,y1)+
+ 1,(x,4,) and | (x,9)] <lylly < Mily]) we get

4 eyl = v aNeey,pNaxce) - AN ey

v_(a¥(t),pNAx(e) - ANpNx(e) + ANV (e))

MvllAx(e) - ANpNx(ed ] ¢ (aN(e),aANaN (o)),

fa

t > 0.

By (H2*,1i) we have t_(a"(£),A"aN(t)) < alaV(e) |l for a11 N
(see for instance (30], p. 244). Therefore for y = My

eVl <alla¥e) iy + HiAxe) - ANVl v s o,

which implies

NNl < 11aNee)

t
f
0

R (4.4)
I1Ax (1) - Ahphx(T)jiew(t-T)dr, t > 0.

< ¥
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for all N. Since D is invariant with respect to S(t) we have

x(t) = S(r)xo € D fort> 0. By (H3) we can use Lebesgue's
dominated convergence theorem in order to get

1im aN(t) = 0

N+
uniformly for t in bounded intervals provided Xy € D. The estimate
lx(t) - xN(t)H < |lx(t) - pNx(t)“ +[[AN(t)H together with b) from
above proves

N
lim eh tpNx = S(t)xo

N+« 0

uniformly for t in bounded intervals for all x D.

0 €

For arbitrary X, € X we choose a sequence {xn} in D with X, * Xqge
Then the estimate

Ixctsxg) - 2 (espxg) i < Il x(tsx

0) - x(t;xn)ﬂ

*le(t;xn) - xN(t;pan)H +I(xN(t;pan) - xN(t;pNxo)H

- wt wt - . o NN
(Me®" + Me leo xNH +l|x(t,xn) X_(tgp XN)“

proves (4.3) for all x

o € X o

The methods in the proof of the previous theorem are well known
in connection with numerical approximation of partial differential
equations (see for instance the proof of the Lax-Richtmyer
equivalence theorem in [22]). For delay equations this approach
appears for the first time in (3], (6] and has later on been used
in [25]). We consider the more general Benach space situation,
because the proof is almost the same as in the Hilbert space case.
We equally well could have used the Trotter Kato theorem [32}. We
choose the classical Lax-Richtmyer idea, because with minor
modifications the above proof also applies to the case of time
varying coefficients.




. -
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Next we consider the nonhomogeneous problem

x(t) = Ax(t) + Bu(t), t 2 s, (4.531)

xb € X, (4.5;2)

x(s)

loc(s,uﬂR") and B is a linear operatorjmz + X.
The unique mild solution x(t) = x(t;s,xo,u) of (4.5) is given
by

where u e L2

x(t) = S(t-s)xo + Z S(t-t)Bu(r)dr, t > s. (4.6)
In addition to the approximating sequence XN, pN, AN, N=1,2,¢..,
introduced above let us assume that BN, N=1,2,..., is a
sequence of corresponding input operatorsilRz -+ xN. Then we
consider the approximating systems

ANy » BNuce), t o> s, (4.7;1)

N pNxo: xO € X, (4.7;2)

»
~
<t
~r

"

»
—
]
~

]

on xN with the unique solutiocn xN(t) z xN(t;s,pNxo,u) given by

t
N(e) = SNe-8)pVx, + [ SNe-n)BNu(rrar, € > s, (4.8)
8

0

where SN(t): X + X is defined as above.

The following theorem and its proof are a slight modification
of a result already established in [ 4 ].

Theorem 4.2. Assume that SN(-), N =1,2,..., and S(+) are
Co-semigroups on X such that for constants M > 1, w € R

isNerl < me*®, t >0, N=1,2,..., (4.9)

and for all xo € X




lim SN(t)pNxo = S(t)x, (4.10)

N+o

uniformly on bounded t-intervals. Furthermore assume that

1im BNe = BE for all £ e R'. (4.11)

N+

-

Then for all Xq e Xand T > 0
. N N _ . )
1lim x (t;s,p xo,u) = x(t3s,x4,
N+w
2 T RY) with
uniformly for 0 <s <t < T and for u e L (s,

< 1.
lallz | o n

-- .- - -

Proof. By (4.9), (4.,10) and (4.11) we have SN(t)BNg + S(t)Be¢
for all g e R uniformly for te [0,T] (note, that (4.10) implies
DN + I strongly) which shows

is¥e)8Y - sce)sll + o

uniformly for t e (0,T]. By (4.9) and an application of the
dominated convergence theorem we get

T
AIISN(t)BN - s(t)Blfat - o.

Then the result follows from

llx(t;s,xo,u) - xN(t;s,pN

xo,U)“

t
<listt-s)xy - $" (6-8)p" kg || + [lIs(t-1)8 - sN(t-1)8Y|| (o) |ax
- 3

<|B(t-s)xo-SN(t-s)pNxol|+

T
o (f listers - sNe)s")2 ae) 2y, .
0 L"(s, T;R")

e o o




4,2. Approximation of the feedback law | h

Throughout this section we assume that X is a Hilbert space.
We restrict ourselves to the finite time control problem of
minimizing the cost functional

J (u) = <x(T),6x(T)>
s (4.12)

T 2 T
+ f tllex(e)||€+ u(t) Ru(t)ldt
8

associated with the Cauchy problem (4.5). We assume that the
operators G: X - X, R: m‘ -le", C: X + R™ are defined as in
Section 3.1. As we have seen in that section (with obvious
modifications for the case when the initial time s is not necessarily
zero), the unique solution of this problem is given by the feedback
law :

U (t) = -R7IBsP(t)0(t,8)x,, s <t <T, (4.13)

where P(t): X » X is the unique positive semidefinite solution of
the Riccati differential equation (3.5) and ¢(t,s) is given by
(3.8).

Correspondingly, we consider the sequence of control problems
of minimizing

Jg(u) 2 <xN(T),th(T)>
N 2 T
+ [ llex (e 1€ + u(t) Ru(t)lat
8
N . N N . .
where x (t) = x (t;s,p xo,u) is the unique solution of (4.7).
The optimal control is given by the feedback law

'Gg(t)

~r M)V () oM (e, 9)p"x, (4.15)
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where the strongly continuous, positive semidefinite operator
PN(t): X + X and the strongly continuous evolution operator
ON(t,s): X + X are defined by the equations

Pieyx = sNr-t)*pNepNeN(T,t)x

(4.16)
T
+ SN('r-t)‘pNC‘CpNoN(r,t)xdt, t <T,
t
and
ON(t,s)x = SN(t-s)x
(4.17)

t
- sN(e-v)BMR7L(BN) PN (1) eN(x,s)xar, ¢t > s,
8

for x € X. It follows immediately from (4.16) and the fact that
PN(t) is selfadjoint that

Pty = p"PN(erpY, ¢ < T (4.18)
This in turn implies, by (4.17), that

pNoN(t,s) = 0N(t,s)pN, s <t <T. (4.19)

Note that these two facts justify the second equation in (4.15).

Moreover, the optimal cost of (4.14), (4.7) is given by

Jg(ﬁﬁ) . <x0,PN(s)x0>. (4.20)

We remark that PN(t), regarded as an operator on XN, satisfies
the following finite dimensional Riccati differential equation
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L
.

T

I b bt st e

é% Pty + (ANyePN(e) « PN(e)al

N N

- Mee)VR 18Ny (e) « pNercpN =0, £ <, (4.21)

PN(T) = pNGpN-

Obviously, the most interesting question is how the original
system (4.5) behaves when the optimal feedback control (4.13)
is replaced by the approximate control law

Gg(t) : -R'I(BN)trn(t)QN(t,s)xo (4.22)

where ON(t,s) denotes the corresponding closed loop evolution
operator on X and is defined by

N(t,s)x = S(t-s)x
(4.23)

t ~
- [ s(t=-v)BR™1(BN)*PN (1) 0N (1, 5)xdx
8
for x € X and s <t < T. All the desired convergence results are
contained in the next theorem which is a straight forward
consequence of Theorems6.1 - 6.3 in [21]. For the convenience of
the reader we present the main ideas of the proof.

Theorem 4.3. Let us assume that
(1) there exist constants M > 1, w € R such that

Hsn(t)llj me®, ¢t >0, N=1,2,...,
(ii) for every x € X
11m SN(t)pNx = scerx, 1im SN(e)*pVx = S(t)*x

Noeo N+e

uniformly on (0,T] and
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(iii) lim BNE = B¢ for every ¢ e RY.

N+ %

Then, for every x, € X, 1
(2) im NGEY = 1im J_@N) = J_(@)

New S S Now S S s s’ '

(b) 1im Wh(t) = 1im uN(e) = T_(t), i

N> 5 Nor= 5 S ‘

(¢) 1im oM(t,s)x, = Lim oN(t,s)xy = o(t,8)xg, g

N+w N+ 1

. N _ '

(d) lim P (s)x0 = P(s)x0 ,

N+= ’
and the limits are uniform on the domain 0 < s <t < T. If ;
G: X+ Xis a finite dimensional operator, then PN(s) converges *
to P(s) in the uniform operator topology, uniformly on the interval £
{o,T]. t

Proof. Let us introduce the operators Fs(t): L2(s,TﬂRl) + X,
G.: X » 1?(s,TRY), R : L2(s,TRY) + L3(s,T@R") by
defining

. t
Fs(t)u = i S(t-t)Bu(r)dr,

T
F (T)*GS(T-s)x + f Fo(r)*C*CS(r-s)xdr,  (4.24)
s

(2]
»
]

R u
s

T
Fg(TI*GF (T + | Fo(1)*C*CF (ludr + Ru

for u € Lz(s,TﬂRl) and x € X, Of course, Ru is defined by (Ru)(t) =
Ru(t), s <t < T. Then it is easy to see that the Frechet derivative
of Js with respect to u is given by Jé(u) = 2Rsu + ZGsx . Since the

- _ 0
optimal control ug satisfies Jé(us) = 0, this implies

- . _p-1

Analogously, we get
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=N Ny=1g N, . _ (gNy=1N
Uy = - (RGP Xy = - (R)TTG x, (4.26)

where RN GN F§ are defined as above with S(t), B, C, G ‘
replaced by S (t), BN, CpN, pNGpN, respectively. Combining these ’
formulae with (3.8), (4.13) and (4.17), (4.15), we get

- _ - -1 g
®(t,s)xy = S(t-s)xy - F (£IR "G xy, (4.27) |

oM (t,8)x, = sN(e-s)x, - r§<c>(n§>‘1e§xo (4.28) )

for every s € [0,T] and every t € [s,T].

We have shown in Theorem 4.2 that Fg(t) converges to Fs(t) in
the uniform operator topology, uniformly for 0 < s < t < T. This
implies that for every x € X

lim ng = 6 x (4.29)
N+

uniformly on [0,T] and moreover ||R -R H + 0, also unlformly
on [0,T]. Choosing € > 0 such that ETRc > e|£| for £ e R , we

obtain
RNl seliuil, uet®(s,RY, N=1,2,...

and hence
1im || (R 71 -RZY)| = 0 - (4.30)
N+e

uniformly on (0,T].

J
It follows immediately from (4.27 - 4.30) that oh(t,s) converges
strongly to ¢(t,s). By (4.16) and (3.7), this implies the strong
convergence of the Riccati operators PN(s) to P(s). Now the

convergence result on oN(t,s) follows from the inequality
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Nect,s)x - oN(t,s)xl]

t
< [ liste-0)BR7Y( |1 ((BY)*PN (1) - B*P(1) 10(1,8) x|t

w
ct

+ IIlS(t'T)BR-l(BN)*PN(T)II“;N(T,S)X - ¢(t,s)x}] dr

o

and Gronwall's lemma. Thus we have established the statements

(¢) and (d). Statement (b) follows from (c) and (d), since the
control functions Gs’ Gg, ﬁg are given by (4.13), (4.15), (4.22)
respectlvely Statement (a) is an 1mmed1ate consequence of (b) and
(d), since J (u ) = <X, P (s)x > and J (u ) = P(s)x >, If

G: X » X is a flnlte dlmen51onal operator, then the convergence

of PN(s) in the uniform operator topology can be established by

analogous considerations as those in the proof of Theorem 4.2,
again by the use of the formulae (4.16) and (3.7) ©




4,3. A special spline scheme

In this section we develope a special scheme which satisfies
all assumptions of Sections 4.1 and 4.2. For N = 1,2,... we choose
the meshpoints

N Tk
tkj =-hk-1-J'ﬁ"k=1’.-o’p;j =°""’N’

where R
The sequence XN, N =1,2,..., of subspaces of M2 is defined by
N
N _ 2 _ =N ~N n
X' = {6 e M| ¢ = eqoy * 121 jZoekjak-j’ uO’“kj e R} .
The "basis elements" ég, ékj are given by
& = (1,0, éNkj = (o,eﬂj),
where
N, _.N N N
. I‘—k(r tkl)I for te [tkl’tko)’
eko(t) -
0 elsewhere,
N, ._.N N _N
( rk(t tk,j-i)I for te [tkj,tk,j-il’
N - N,._.N N N
(%) = 4 rk(t tk,j+1)1 for ve [t s.q4sty;ls
\ 0 elsewhere,

j s 1,00.,N-1, and
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N N

N N
—( tk,N-i)I for te [tkN’tk,N-ll’

N . Ty

0 elsewhere.

Here I denotes the nxn identity matrix. The following diagram

illustrates the definition of the basis elements egj.

A
N N N
€kN €kj iko
N 3 , 4 -
-h N N _ _ N
“hp=tyn tys he-13%%0
Figure 1
It is obvious that
. N
dim X° = n((N+1)p+1).

We see that XN is the subspace of all elements (00,01) € M2 such
that ¢0 is arbitrary in R" and ¢1 is a piecewise linear R"-valued
function which is continuous except possibly at the delay points
-hkvﬂere jumps of arbitrary size can occur. By definition we can
always assume that ¢1 is right-hand continuous on (-h,0). Thus

XN is neither a subspace of dom A nor one of dom A*. Since XN
contains all (00,01) where 00 e R" and ¢1 is a spline of first
order corresponding to the mesh {tN.} it is clear that the

k
orthogonal projections pN: M2 - x" satisfy hypothesis (H1) of

Section 4.1,
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N

Py’
ve

’u

For notational purposes we introduce the orthogonal projection
12 (- h om™) - span(eNo,...,e ), i.e. for ¢ = (o°,¢1) € M°

have p ¢ (oo,pgol) Furthermore we put

aN ~N ~N ~N
E (eo,e 0,...,epN)

and denote by aN(¢) the "coordinate vector"

(ay )
003010,'00,GPN

N N Temnl(N+1)p+1]

of an element ¢ € XN, i.e.

6 = “NaN(¢), s e X\,
An easy calculation shows

Moy = @) W6, ¢« M2, (4.31)
where

dN(o) = <éN,¢>M2 =z °°l(¢0’<e§0’°1>L2"‘"<egN’°1>L2)
and

r r
QN = diag(I,—N-i-qNuI,...,—NHqNoI).

N
The (N+1)x(N+1) matrix q is given by

(1 1
5 % 0 0
1 2 \\\\
N_ |83
Q"o 0‘
2 1
38
_._11
t 0 0 5 3|
For elements in x" the inner product has the representation
W o - Mot ), e e 1t (4.32)
-39
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We have seen that XN is not contained in the domains of the
operators A and A*. However, these operators can be formally

extended to all of XN in the following way.
0 .
0 _ 0 1, 1
[A017 = Ao~ + k§1 Ao (=h) + _i Agq (e (1)dr,

(aedt(o) = $oo* (1) + 6,() 6% - 1im o1(e))

t40
p-1
+ 1 ¢ (r)(O (-n) = lim ¢ Yy,
. k=1 t4-h

k

(a*91% = 2im v1(0) + ATYO,

40

lA‘wll(r) = Agl(t)wo - %% Wi(T)

p-1

v 3 s (0 - yl-n) ¢ 1im vl (o))
k=1 T4~ hk

v 6 (0 (an® - vt -n)),

for ¢, ¢ € XN where 6 denotes the Dirac delta impulse at -hk,

k = 0,1,...,p. We w111 introduce the operators AN and (A )* by
projecting these formal extensions formally back into the

subspace XN Since the jumps of the function components of elements
of XN occur precisely at t = -hk, we have two possible
interpretations of dk as a functional on XN, namely the evaluation
of either the right hand or the left hand limit at -hk.
Correspondingly we introduce the following two types of approximate
delta impulses which can be obtained by a formal projection of

6k in one of these two ways. We define

N “N_N

CK,# = E Yk +? k= 1,...,P,
Ga’- = ENYlNc’ k = o’ooo,p-i’

where

-40- !
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N N - N N
Q Yk,* - col(o’eio(-hk)’oo.,epN(-hk))
and
Qlvg = col(0,1im &N (v),...,0m &N (o)),
’ ‘+-hk T’-hk P

First observations are contained in

Lemma 4.4, a) For any x eR" and ¢ € M2

<6§’+x,¢>ma = xT(p!;l 01)(-hk), K =1,...,p,
¥ e = 1m N0, k= 0,...,p-1.
’ t+=h
k
N n 2
b) For 6k ; a8 operators B + M we have
]
e, ol 2 @DY2 =2,y

||c§’_lli (-16.ﬁ )32, x = 0,...,p-1.

k+1
Proof. a) Using (4.31), (4.32) and the definition of cg , We get
>

N - NN N s
<6k,+x’¢>M2 = <E 1k’+x,p $>y2 =

SHIOR-ATS

xT cdl(Q,efo(-hk),...,e:N(-hk))aN(pNo)

%" (p)o*) (~h, ).

The proof for 62 _ is analogous.

b) Using (4.32) ;nd the definitions of 62 +? QN we get for any
n ]
x €R .
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ey ,x|I2 (Y§,+X)TQNY§ X

k,+

(0,...,0,xT)£L(qNa‘I)-icol(o,...,o,x)
k

6N 2
F-lxl s

Ia

k = 1,...,pP,

N 1 . N
where we have used xmin(q ) > z . The estimate for Gk,- is
analogous o

Definition 4.5. For any ¢ = (¢0,¢1) e XN we define
| 0
N 1 N d
A¢d = (Ao kiiAk¢ (- h ) + £ AOI(T)¢ (t)dr, P1 as 0 ))
N .0 1 Pl N
+ 6 (67 - lim ¢ (1)) + ] 6 G- h,) - lim s (1)),
’ 40 k=1 k,= Tf-hk

It is clear that AN is a linear operator XN - XN. The adjoint

operators are given in
Lemma 4.6. The adjoint operator (AN)* is given by

+
Awe = (uim vio) + a0, VAl 0 - Savty)

]
40 01
p'1 N
+ (Ak¢ + lim vi() - v (—h ))
k=1 k,+ tf-hk
- N T O 1
+ sp,+(pr v (-h))

for ¢ = (wo,wi) € XN.

Proof. By definition of the adjoint operator we get

2=

e e v —— .
e e = e p— - uwmmﬂ‘




<(AN)t¢,¢>M2 = <¢’AN¢>M2

0
0 1 1
6T 1a 00 + k§1 M (om) ¢ T ag (007 (1)ax)

1 N,d* 1 N 0 _ .. ,1
+ <b7,py(Fge )22 + <vadg (e iig 7 (1>
pci N .1 .1
+ kz1 b6, _(e7(=ny) - 11Thk¢ (t))>y2
for any ¢ = (¢°,¢1), b = (wo,wi) in XV, By part a) of Lemma 4.4
we see
<o,65 (6% - Lime' (1))>p = (2im 1170 - Lim oT (1))
’ 140 40 40
and
N .1 c1
<P,6 (67 (=h, ) - 1im ¢ (1))>, 0 =
T K,= k T4-h, M2
= tuim v (170 (-n) - 1im o1 (o)),
tf-hk tf-hk
k=1,...,p~1. Furthermore,
1 N+ 1 1 d+,1 E Be-1 1, T, 4
b7 ,p (Gt %2 = Vv aget L2 © / v (1) (ago)(T)dt
k31 =h_
= §oum 20Tl - § vienpTeleny)
k=1 t4-h, k=1
Nd+ 1, .1
= <Py (et )0 2
and
WOT T A (eyelierar = <aT 40,0k 5 = oML 40), 00>
Vg Bogtrle lmidr = <Rog¥ e 2p2 2 Py lAga¥ Ve 2

Putting things together we get
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«WM)yey,050 = (1im ¥ (o) + aTe01 e 4

t+0
p-1
s 5 (a50 « 1im wl(o) - wi-n 01Tt (-n))
L k Kk k
k=1 1 é-hk

T O 1 T 1 at 1 1
e 1age® - v en 1 Teten) ¢ <Ry ag, o0 - Soety et 5.
The result now follows by an application of part a) of Lemma 4.4 o
We define the sets D and D* by

D = (¢ e M2|60 = 42(0), ¢! e w2*2(-n,0m™))

and
D* ={y € lewi(-h) = Agwo,w + pi iwox[ -h, h ] 2(-h,0ﬂPn
and A01¢. -%—;wlew *2(-hy,-hy s B ,k=1,...,p}.
Lemma 4.7.  a) D(A%) ¢ D and D((A*)°) c D*.

b) There exists a constant Yo such that for any ¢ e D and N = 1,2,¢0.
1A% - Roll 5 < <2 |lot :
M2 - N w222

1,2
¢) Assume that A01 e W™ (-hk, h

there exists a constant §

lk(_i;]Ftn’“")f'or." k = 1:...,p. Then

0 such that for any ¢y € D* and N = 1,2,...

Il (aN)yopNy - A*vlly 2

s

0
s max (kg

n
k=1’ooo,p L (-hk’-hk_i;m )

1
C o nde

+ i




Proof. a) This is clear by (2.6) and Lemma 2.1.

b) For ¢ = (¢°,¢1) e D we put oN = p?oi. Then by (2.6) and

Definition R.S we get
1A Ne - aeli

5||(k§1Ak[’N(°hk)"‘1('hk)]

0 MU
LA°1(1)I¢ (1) = o™ (0)1ax,p) (Geo™) - ¥y
p-1 N
+llc§ -”’éo-lim ¢N(t)| + ) HG N l¢ (-hy) = 1im ¢ (T)l
’ t40 k=1 1+-hk

N 1 N b
< B - i o Uaglize 116 472

N d N ‘1 ] o1
+ “91 0 | 2 + ”p (7)) -6 ”L2

p-1
» H20130) - 2im o))+ 3 GeNenp - o2 (on)
140 k=1

+ |0 (<h,) = lim (t)l)]
T4=hy

< lkfi Al + 2p=1) B2/ 2y 10% - Nijav (1ag, il alle * oMl

-8y

+ “de‘ Lz "Hpg(ii)-iillg .

Here we have put o = min r,. Since ¢N|[-h ,~h s
K=1,...,p K k-1
k=141,...,p, is the image of ¢1|[-hk, h _,] under the orthogonal

projec;ion of Lz( h s h 1.m ) onto .
span(ekoll hk’ hk_il,...,eﬁNll hk’ hk-il)’ we get from standard
estimates (cf.(38]), Theorem 6.5 and Exercise 6.1)

1 N nst. ;<1
o™= o711 2 :—T—°°N’ o™l o >

~45-




a* N

. t.
4t - Seo I 2 < B

el
12

and

! N,«1 const.
le™ - pl(¢ )”L2 "-——-||° Il 2’

where the constants are not dependent on 0 and N. On each

subinterval [- hk’ k- 1] ¢ = xN, where xN is the cubic type I
T )
interpolating spline for ¢(t) = £ £ ¢1(o)dode (see for instance
- - k -

[38), Proof of Theorem 6.6). Note, that interpolating cubic
splines in ([38) are type I splines (cf.[1)). From [24],
Theorem 5.7.1 (with L = %3 and m = 2) or [12], p. 235 (with
m=r=2,q= =) we get

1,3/2
l|¢ - ¢ ”L”< const. (F)7 7|l ¢ sz,z’

where again the constant is not dependent on ¢ and N.
¢) As in b) we put w pl;lw1 for ¢ € D*. Using Lemma 2.1, Lemma 4.6

and y € D(A*) we get

(1 aNy=pNy = ary i

<l (lim ¢ Nee) - (0),p1(A01¢-° ﬁew‘%
t+0
0. d,1 Pt 1o
p-1
+ 1 ||6k N |A + 2im yN (1) - vN(-n |
k=1 T?-hk
TO N
vlleg oIt 1424 - vV -m) |
< 11 -0 EHVZ to Ny .

T 0_4d* T 0_g*

N a+
+ llp (A v - 3gv Yy - (Age¥ - F5¥ Hil L2 ||‘,-9('|»1

N
vl 5.
L2




T 0_d+.1 1,2, =l -
Since A01w - 35 € W ( hk’ hk_1;R ), k=1,...,p, we get from

{381, Exercise 6.1,

N, T 0 d+. 1 T 0 4+ 1
Hpg(Ag v” = ggv ) = (Ag ¥ - 35¥ )llLZ
. - 0 -.1
<gemst. o AT WO - I, n
kzl,-on’p L (-hk’-hk-lm )

where the constant is not dependent on ¢ and A01.

Similarly as in b) we get

||¢1-¢N||L~_<_ cons'l;.(f‘ll-)y2 max ”'311” 2.2 n
k=1"ou,p W ' (-hk,-hk-lﬂa )
and
+, 1 . -
IG5 -l , < %2R max (W1, o -
L kzi’ooo’p L (-hk,-hk-im )

Note, that from the assumption on A01’ we get

1 - 2,2, . R/D . . .
vl h,~h,_,1 € W*(-n,,=h, _,R"), k = 1,...,p. Putting things
together we get the desired estimate a

An immediate consequence of Lemma 4.7 is

Corollary 4.8. a) If we take D = D(A2) then hypothesis (H3,i) is
satisfied for the sequence XN, pN, AN, N =1,2,... and the
semigroup S(¢).

b) If A.. € Wl’a(-hk,-h

R™Py k= 1,...,p, and D = D((A*)?)

01 k-1

then hypothesis (H3,i) is satisfied for the segquence XN, pN, (AN)‘,

N=1,2,..., and the semigroup S*(-).

The next lemma establishes (H3,ii) for XV, pY, AN, S(+) and

st PN, (AN)‘, S*(.), respectively.




Lemma 4.9. a) There exist constants M > 1 and v € R such
for all ¢ € D(A2)

N -~
AN s ()0l < Me®®lo],, t 2 0, N = 1,2,...,
- | 2.
where o], = llell + ||Asli + [[A%]} .
b) Assume Ao1 € Wi’z(-hk,-
exist constants M* > 1 and € R such that for all y e D(

1 (aNy*pNs* (£)y]] < Meelyls, £ 2 0, N = 1,2,

where 1vl3 = Ilvll + 1A%yl + [1(A*)%y)) .

equipped with the norm i-|2, we have

1S(t)el, < Me®®lol,, t 2 0, o € D(A?),

hk_lﬂan”"), k = 1,...,p. Then there

that

(a%)%)

Proof. a) Since S(.) restricted to D(Az) is a Co-semigroup on D(A2)

k

with some constants M > 1, w € R. From Ak¢ 2 (L( k_loi),d
k = 1,2,000y ¢ = (¢o,¢1) € D(Ak) we see that de d

1 2
”¢ ”w232 < l¢|2’ ¢ € D(A )-
Therefore, for ¢ e D(A2),

> 0,

() o) ly2,2 < Me®ial,, ¢
and by Lemma 4.7,b)

1ANBNS(t)e | < [1aS(E)a | + [|ANpNS(t)e - AS(E)e]l

Ia

M t
Me"® a0l + 2 Me®®lol,

M+ vg)e*% o),

A

fort > 0and N = 1,2,... .
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b) As in part a) we have (

(' » wt *
s Ceaels < Me“Cluly t

for t > 0 and ¢ € D((A*)%). From A*y = (¥1(0)+ Agwo,Agiwo - g%wi),

+ +
(a*)%y = (...,A'gi(wl(o) + Agwo) - %(Aglwo-%ﬂ'l)) and the fact
that on the intervals [-hk,~hk_1], k =1,...,p, Wwe have
d+,,T 0 g* 1, _ «:T 0 ° «1% ¢ . oz
33(A01¢ - g8¥ ) = Apgv - ¥ it is not difficult to see that
for a constant « > 0 depending on A01 the following estimate b

is valia:

1 2 i
max e ”WZ’Z = "“’l; . v € D((A*)"). i

n
k=1’000,p (-hk’-hk"lm )

The rest of the proof is analogous to that for part a) but now )
using Lemma 4.7,c) o

Lemma 4.10. Hypothesis (H2) is valid for the sequences AV and
(A )‘,N: 1,2,-0. .

Proof. We introduce an equivalent inner product on M2 by

0
“9*’8 = (OO)T*O + ! 01(T)TW1(T)S(T)dT’ ¢, V € Mas

where g is right-hand continuous on (-h,0] and

g(tr) = p-k+1 for v e {-h,=h _,), k = 1,...,p.

2

It is clear that the corresponding norm || +|| ,on M° is equivalent

g
to the original norm. In fact we have

Hell <lollg < Bllell, o M2 - 4

=4 Q=




Since (¢0,¢1g) € XN for any ¢ € XN, we get from Lemma 4.4, 2a)
that

-

N T .. 1
<6k,-x’¢>g = (p=k)x” lim ¢ (t)

t+—hk

for k = 0,...,p-1, x e R" and ¢ € XN. Using this equation and
Definition 4.5 we get for ¢ € XN

0
<al,0> = (age’ 4 51 Mo (o) v Ay ()0 (x)ar1Te®
k= -

+
N(d 1

1 0 ... 1, T .. .1
+ <p.(Fz¢7),¢7g> >+pld -1im ¢ ()] 1lim ¢ (1)
17de” 727 B q2 140 740
p-1
+ 1 (=) leT(-n) - 1im o1 (17T 1im o ().
k=1 tf-hk 1*-hk

Obviously p¥(¢1g) = ¢1g and hence

Nedt 1, 1 ._ d+.1 .1
<Pi(53¢ )N E>I?- <33¢ s ® 8>L2
§ “By-1 .1, (T2
= (p-k+1) | ¢ (1) ¢ (1)dr
k=1 ~h,
=3 Y (p-k+n)2in  lel(n)I2- Lot (-n,) 121,
k=1 t4=h

k-1

Using this and several times the inequality aB < % a + % 8
we get for ¢ € X

N




N 1 2 2
CRCRITWIS 3 ATNLRY PV TV

% lod (-h, )!2 El¢°|2 2 lim |¢? (1)1
0

+
Nhé

§ p-kentuim (410 (2 [o2(-n 2
k=1 tf-hk_l .

Y poke tlsl-n_12-1n  el(0)]?
k=2 T4=h,_4

N

)=

<dldlZ+ 3 g |¢1(-hk)|2-§|01(-h1)|2

3 L e-cenileten piF- et en 2

=un¢n2

with o = g + IA | + l § |A l +|lA 1” 2° This proves (H2*) with

lelly =ll-llg for a1l N (cf. 301, p. 2uu) Since (H2) and (H2*)
are equivalent andllSN(t)H -IIS (t)*]| the proof is finished o

Lemma 4.10 was the final step to show that Theorem 4.1 applies
to the sequences XN, pN, AN, N=1,2,..., and XN, pN, (AN)*,
N =1,2,..., defined in this section. The corresponding input
and output operators are given by BN =z pNB = B and CN = CpN = C,
since R" x {0} ¢ XN for every N € N. Hence the approximating

systems are described by the ordinary differential equations

W) = ANty + Buce)
yN(t) = CwN(t), t >0, (zN)
wN(O) = p"o. ¢ € Mz
on the subspaces XN.
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In an analogous way we can define the operators Agz M

by taking the transposed matrices Ag,...,Ag and Agi(') in
Definition 4.5. Obviously all the results of this section can

\J
also be applied to the operators Ah. Therefore we obtain the

T
sequence
Ney = (Ag)‘zN(t) + Bu(t),
*®
yh(t) = ca(t), t > o0, (xN")
zN(O) = pr, f e M2,

of control systems on XN approximating the Cauchy problem (2%).

Now let us assume that R e]Rlxz is positive definite, Go e RTD
2 is defined by G¢ = (Go¢0,0)

for ¢ € M2 (compare Section 3.2). Then we consider the control

is positive semidefinite and G: M2 +~ M
problems of minimizing the cost functional
N N N TN, 2 T
J7(u) = <z (T),Gz (T)>+fI]y (£)] +u(t) Ru(t)lat (4.33)
0

subject to (ZN) and (zg*), respectively. The corresponding Riccati
operators are

N o
ey = prNeernN, PNty = pNENeede®, 0 <t <,
and satisfy the following Riccati differential equations on XN

La¥e) + @aNerlie) ¢ aNe)al

- tNe)Br™2BanN(e) v c*c =0, 0 <t < T, (4.34)

Ny =,




£ M)+ agptie) + Pyl
- PM(t)BR™Ye*PN(t) v+ c*c =0, 0 <t <7, (4.35)
PY(T) =

These two Riccati equations have an interesting interconnection.
In Section 5.1 we shall see that - for a large class of systems -
thére exists an operator FN: XN + XN which maps the solutions of

(tN) onto those of (zg*) or, equivalently, satisfies
(ag)FY = PV, B = P, ¢ = cF.
Under these conditions it is easy to see that
nN(t) = (FN)"PN(t)FN, 0 <t <T. (4.36)
It follows from the results of this section that Theorem 4.3 can
be applied to the systems (z“) and (:g‘). More precisely, we have

the following theorem which may be considered as the main result
of this paper.

1,2 nxn
Theorem 4.11. Assume that A01 € W? (-hk,-hk 1 ) for
k 2 1,...,P. Then
N - - N I
lim ||n(t) - 1°¢e)|] = 0 = lim ||P(t) = PV (t) )}
Noe Noeo

uniformly for 0 <t < T.

-

For implementation of the scheme we have to calculate matrix
representations for the operators AN, (A )* and B (as an operator
:B‘ - x ) with respect to the Dbasis EN. Formula (4.31) shows how
to calculate the coordinate vector of p ¢ for ¢ € Mz.

E\.



-

Define the (N+1)x(N+1)-matrix hN by !

(1 1 }
1 \
E 0
N 2 \\ .
=lo 0o -3
AN i
— 11
| 00 3 -3

and the [p(N+1)+1)]Inx{p(N+1)+1]n - matrix Y by ’

N
iN

I : :

hNaI

N N [
20 s e A2N+A2!oooaoiA

. N ! N N N
AO!Alo evo A +A1-A po ApN"Ap

where I is the nxn identity matrix and

N 0

Akj = I A01(t)e§j(r)dtg k s 1’¢oo’p’ j = o’no.’No




Lemma 4.12. a) The matrix representation [AN] of AN is given by

(aNy = (@97 WY, N = 1,2,... .
b) The matrix representation [(AN)‘] of (AN)‘ is given by

((aNy*) = @Y EM)T.

¢) The matrix representation of B as an operatoriml > XN is

given by
8V = col(Bys0,...,0) e gl (N+1)p+tinxs

Proof. [ANJ is characterized by

oV (aVe) = (aAN1aN(e), ¢ € XV,

On the other hand we get from (4.31) and ¢ = ﬁNaN(¢)

aV(aNg) = (@) 1aN(aNe) = (QY) 1 <EN, ANy

N)-1<EN’ANéN>CN(°)’

(Q

(A¥) = (QV) 1N, ANEN,,

We only have to show
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WY . EN ANEN,

( 2N  N-N ~N NN AN NN _

<e°,A e0> <eo,A e10> ce s <e0,A epN>
N ,NaN_ -N ,N-N -N .N-N

“©j02h ey <€ggehieqg> cee <€ppaAieny” !
N  N-N_ N .NaN .N .N.N

~<epN’A e0> <epN,A e10> ces <epN,A epN>

From Definition 4.5 we get . !

NaN _ N

Alep = (A550) + 65 s .
N-.N _ ,, N _N,eN N _

A eko - (AKO’pi(eKO))-Gk‘la" k - 1’o-o,p,

NN ol NNy,

Aeys = (Apsspy (& K= 1,0005Ps J = 1,00.,N-1,
ANéﬂN = (AgN-+Ak,p§(é§N))+6§’_, kK = 1,...,p~1,
ANégN = (ASN-pr,pg(égN)).
Observing
<e§j,p§(égi)>L2 = <e§j’égi>L2 .
<§§j,6§’_> = 1im eﬂj(r) (cf. Lemma 4.4,2))
tf-hi
and the definltion of éN'and &N, we get the desired result

0 kj
through straight-forward calculation.

In order to prove the representation for [(AN)‘] we use
(4.32) and get
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N ()TN (AN # 10V (y) = V()TN ((aN)ey)

<o, (ANysy> = <aly u>

= oN(aN9)TQNaN(y) = M) T a1 QNN (1)
= oV () )TN (y)
i.e.
(A% = (@ 1T,

Finally we have for any u € r*

QN(Bu)

a"((Bgu,00) = (@) aN((Bju,00)

@"?

col(Bou,O,...,o)

col(Bo,O,...,O)u
which proves the given form of [BNI o

In order to make use of Theorem 4.3 we have to solve the
Riccati differential equation (4.34) in the subspaces xN. If
in the optimal feedback law (3.18) for the delay system (2.1)
we use nu(t) instead of n(t) we get suboptimal controls &N(t)
which by Theorem 4.3,b) converge to the optimal control u(t).
The corresponding solution iN(t) € R® of the RFDE (2.1)
satisfies

a ~ ‘“N
& Py = L) + e,

where GN(t) is given by the feedback law

N)’

aVee) i -p7 BN N 0),3N), v 2 0. (4.37)
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Taking matrix representations for the operators involved
equation (4.34) takes the following form:

4

L (e« M « i)t

- Ve 1BV IR N TN ey ¢ TN (u.38)

=0, 0<t <T,

()] N ¥

"
—
(]
—
.

Here [nN(t)], [CN] and [GN] denote the matrix representatiohs
of the restrictions of nN(t), C and G to XN considered as
operators XN -+ XN, respectively. From the definition of C and G
we immediately see

(eNy - (CgsOsenss0) e g™ [ (N+1)p+l]n
and
Gy O 0
N 0 0 0 [(N+1)p+1Inx[ (N+1)p+1]
(G'] = I , ’ € R ptiin priin
10 o 0

The transformation
r) = QNunN(r-t)1, o0 <t <,

puts problem (4.38) into the form

4 N_ . .NIN N N
S L L VR
- NN iR N TeN . (T ANy, (4.39)
0<t<T,
—58-




Vo) = V1.
Note, that [(AN)‘] = (QN)‘l[AN]TQN. Equation (4.39) is the
standard Riccati matrix differential equation (nN(t) = nN(t)*
implies I‘N(t)T = rN(t)) and can be solved numerically by
standard methods. In many cases a method developed by Casti and
Kailath (see for instance [34], p. 304 ff.) can be used
advantageously. In the case p = 1 and AO1 = 0, for instance,
we define

T -1_T T

Wo = AOGO + GOA0 - GOBOR BOG0 + COCO

and the 2nx(N+2)n matrices

N | 0?4
Fi- 9
AG. 0 0
1%
Y I o0 0
2 0 0o I

Note that (F?)TFg = #¥(0). Then

t
Me) =M1+ [ Nl (oar, (4.40)
0
where
4 Li(e) = o) (At - (8M1r" 18N rN(¢e))
" (4.41)
Li(O) z pg, i=1,2.

Note, that this is a system of Unz(N+2) differential equations
compared to the n2(N¢2)2differential equations of system (4.39)
(in case p = 1 and A01 z 0).
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Finally, let us rewrite the approximate control law (4.37) in
terms of the above matrices. For this sake let us introduce

. N N N
the real nxn-matrices no(t), n10(t)""’"pN(t) by

(13 (t) ¢ ——x )
N ;
mNeeyr = (Tt (4. 42)
| |
fon(®) 1T
and define
mN(t,1) = E ? . (e)Te, (1) (4. 43)
1 k=1 jzo K kJ

for =h < 1t < 0 and 0 < t < T. Moreover, recall that

-

[HN(t)]TQN = QN[nN(t)]. Then the control law (4.37) takes
the following form

ey =

(1]

-r7HE TN @ eV (Mo i M)

- R7(Eg,0,. 0 IV (e Ta (3N (6,50 )

#H

-R’iag{ng(t)TiN(t) + (4. 4b)

N 0
N T 7 N N
+ E I m . (t)" [ e ()X (t+1)ar}
k=1 jso KT . K

S
-r78T Nee)xNeey + Ve, 0N (ee)an)
o {Mo A
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5. Structure and stability

5.1. The structural operator : '

In Section 2we have seen that the structural operator F: M2 - M2 E
plays an important role for the state space description of retarded i
systems. In this section we introduce an analogous operator for :
the description of the approximating systems (ZN) and (zg). The !
first step in this direction is

Lemma 5.1, Suppose that Py % eee rp and AOi(T) £z 0. Then XN
is invariant under the operator F: M° -+ M2 introduced in Section 2.1.
Moreover for every ¢ € M2
pFe = Fple,
j where FN: XN -+ XN has the following matrix representation with
respect to the basis FN
1 0o ) (0—0 .W
n

—0
el l////
p . .
‘.. Io , 8.3-1 = o /l E]R(N+1)nx(N+1).,
0

Ay 0——0,

(F) =

o
*0%sgeve w
[y

‘©
[
‘T

Proof. It is easy to see that under the assumptions of the lemma
we have (cf. (2.9))

o

o ° ¢

and

Per,g ~ g Ai i k+1,N-j» ¥ = 1se0esP, J = 0,...,N @




If A01(1) = 0 and the delays h1""’hp are commensurate

(i.e. hj = njp with o > 0 and nonnegativ integers 0 = ny<n  <...<n )y

1 p
we always can satisfy the assumptions of Lemma 5.1 by putting

n

P~ ., .\ s = .

L(¢) = .§ A;¢(-ip) with A = Aj and A, = 0 for i ¢ {no,...,np}.
i=0 J

Of course, this could increase the dimension of the approximating

systems considerably. We have the following important properties

of FN.

Lemma 5.2. Suppose that r, = ... = r_=: r and A,, (1) 0. Then

1 o) 01
(V1Y = QVeEY), PN = TR

Proof. The first relation is a direct consequence of the special
block diagonal form of QN and

r

0——0 A. 2A.)
7
| 4a', A
N.r N r | 0 ///’ Voo r N N
aj(ﬁq el) = N = (Nq GI)aJ. ’
A7 UA;
i J
2A. A 0—0
AR B

J = 1,...,p. Analogously we get the second relation by direct
computation using

a?(hNnI) = (hN‘oI)Ta?, jJ=1,...,p O

As a consequence of the previous lemma we obtain the following
finite dimensional analogon to Theorem 2.2:

"
o

Corollary 5.3. Suppose that Py = eee =Ty and that A01(r)

Then the following statements hold:

-2~
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Proof. Recall that [ANI z (QN)-1HN and [(Ag)‘] = (QN)_ (hT

(i) FNeANt . e(Ag)'tFN, t > 0.

(11) FUAY = (AR)*F,

(iii) AN = BY, MY = ¢V, Here BN ana cV are defined by BV¢ = Be,
£ eR*, ana ¢V = c!xV.

1 .N)T

Hence Lemma 5.2 shows

(PN = (@Y = (@) AN Y

= (@D TEN = b,
This proves (ii). Statement (i) follows directly from (ii) and
(iii) is trivial o

The above results indicate that - to a certain extent -~ the
approximating systems (ZN) and (zg*) show the same structural
relation as the original systems (I) and (z;). In particular, if
r, * ... =r_and Aio(r) £ 0, then for every solution

1 P
N t N
wN(t) = eA th(O) + e? (t'T)BNu(r)dr, t >0,
0

of (ZN) the function

z“(t) z FNWN

(t)

is the solution of (2¥*) with inital value FNwN(O). The
consequences of statement (ii) in Corollary 5.3 for the Riccati
equationscorresponding to (EN)'and (zg*), respectively, have been
discussed in Section 4.3 (see (4.3€6)).
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5.2. Criteria for stability, stabilizability and controllability

In this section we examine some basic structural properties
of the approximating systems (Z } and (z ‘) We ohall need the
following facts on the real (N+1)x(N+1)- matrlx (q ) 1hN.

Lemma 5.4, a) Let Ith be the operator norm which corresponds
_T N ¢N*1' Then

to the vector norm |xlN = X'q X on

1e@ Ty s

for N = 1 2,... and t > 0.
-1. N N+1
b) Let v € o((q ) "h) and x = col(x ,...,x ) € ¢ , X # 0, such
that either (qu—h Jx = 0 or (uq (h ) )X = 0. Then X, # 0 and
ﬁ 0.
c) Let p € c((q ) 1hN) and x = col(1,0,...,0) or x = ¢col{(0,...,0,1).
Then x ¢ range(qu-hN) and X € range(qu- (hN)T).
d) Reup < 0 for every u € o((qN)-th).

N+1
¢

Proof. a) For every X € the following equation holds:

Re(?Tth) z (Rex)ThN(Rex)+4Im x)ThN(Lnx)
s 4 (5.1)
1 2
= -'é'lxol —EIXNI .
-1 N . . . . N+1 .
Hence (q ) is a dissipative operator on ¢ . wilth respect to

the inner product
T N N+1
YsX> T Y ax, X,y€¢0
N,-1.N . . .
Therefore exp((q ) "h't), t > 0, is a contraction semigroup on

¢N+1 supplied with the norm I-IN (see for instance [32]).
b) This follows from
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+ 1

O———-O

N

e

+

ol Ol
l\)l

uq - h' =

O e O

XTI °4
ONE
+

[V TN NP

+

wile

and the fact that u = t3 is not an elgenvalue of (qN) -1 N

c)x € range(qu-hN) would imply x & ker(uq - (hN)T) which is

impossible by b).

d) Assume that u eo((qN) 1hN) and Reu > 0. Then there exists an
€ ¢N+1, x # 0, such that (qu-h Jx = 0. By (5.1) this implies

(Re u)X2qx = Re (xThVx)

o
A

[1]
'
[N

Hence Xg Xy ° 0 and therefore x = 0 by b) in contradiction to
x#0a

For every u € ¢ which is not in the spectrum of (q ) -1 N (in

particular for every u in the closed right half plane) we introduce

the vector
aN(u) = col(aN(uw),.e.,aNu))
: 0 N

as the unique solution of

(ua¥-na¥ () = co1(1,0,...,0). (5.2)

Moreover, we define

~ e e m




N

a5,k

"

r. r. r
aNoghaNo-dedy - e, (5.3)

j=1,...,p, k =0,...,N. Then the complex nxn-matrix

AN(A) = Al -Ay- 'E [Aja?’N(x) + Z A?,k 5.k (X)l (5.4)

J=1 k=0
plays an analogous role for the approximating systems (ZN) and
(zT')as the characteristic matrix a(ir) does for the original systems
(£) and (z;). In particular it determines their input - output
behaviour.

Proposition 5.5. a) The left upper nxn block XN(t) in the matrix
\

N *
e[A It coincides with that of the matrix e[(AT) It and its Laplace

transform is given by 2Noy~t.

b) Let wN(t) = col(wg(t),...) and zN(t) =z col(zg(t),...) be the
unique solutions of (XN) and (zg*), respectively, with initial
state zero. Then

t
wWi(e) = zh(e) {; N(t-s)Bu(s)as, ¢ > o.

¢) The transfer matrices of (zN) and (zg*) coincide and are given
by

N . N, -1

G () = Cot (1) BO.

Proof. a) It 1s sufficient to show that the left upper nxn block
1n (AI- [A ]) respectively in (AI - [(A.I.)"l).1 is given by
aN(3)"1. Let A € ¢ be such that x—Nl¢ o ((@™) Yy for j = 1,...,p
and choose z = col(z,,0 yeees0) € ¢“*p(N+1)n where z, € ¢". Then
(AI'-[AN])x = gz if and only if (AQ -H )x = z or equivalently

N ) )
r. N N
((A-ﬁlq -h)eDx; = col(xJ 1, N20seees0)s (5.532)

j =1’ac.,po




Here x = col(xo,x

see sy ), where x,. € ¢ s X: = COL(X, nseeesX, ) €
¢(N*1)n 1 0 s0 J,N

with x, K€ ¢"  and xo N ° xo. By definition of the
o5 (A) equations (5 5) are equlvalent to
’

AN(x)x Zgs (5.6;1)
"j K * 9 k“)"o’ J=150e.,p, K = 0,...,N (5.632)
3 3

This proves the statement on the matrix (AI - IANI)-

. Furthermore,
(AI- ((AD*1)x =

z if and only if (AQN- (Hg)T)x z z or equivalently
(xI--Ao)x0 =Xy 9 % Zgs (5.7;:1)
r.
(Ol - (T e 1)x; =
(5.732)
col(A AN N

3,0%0% oAy Na1Xor (B + Ay \IXg XLy o)

j =1,too’p’

where x +1 0 := 0. Since the first row of the matrix (uq -~ (h )T).1

is given by (a (u),...,a (u)) we see that (5.7) is equivalent
to (5.7;:2) and

N = .
87 (M)xg = z4, (5.831)
- N, Ti N N N 1 N :
3,07 igj[AiaN(Air)+k§oAi kN %o ceeeayOghy,
| ] (5.8;2)
J = 1’ooo,p.

This finishes the proof of a).

Statements b) and ¢) follow directly from a) O

The following characterization of stabilizability and
detectability for the approximating systems (zN) and (z.,*) is

precisely the analogon to Theorems 2.3 and 2.4

1
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Theorem 5.6. a) The matrlx [A ] (or equivalently [(A )*1)is stable
if and only if det aN () # 0 for every » € ¢ with Rex > 0.

b) The system (2 ) (or equivalently (zg‘)) is stabilizable if and
only if

rank [AN(A),BOI = n

for every i € ¢ w1th Re A > 0.
c¢) The system (Z ) (or equivalently (2 *)) is detectable if and
only if

c

. N
rank [A (A)} =n
0

for every A € ¢ with Re A > 0.

Proof. It is well known from finite dimensional linear system
theory that (EN) is detectable if and only if ker(AI—[AN])n ker(ch )=
= {0} or equivalently

ker(AQY - HY) o ker (V) = o
o,
for every A € ¢ with Re A > 0. But A—l ((q ) 1hN) for Re x> 0
(Lemma 5.4,d)) and X = col(xo,xi,...,x ) € ker(AQ -H ) is
equlvalent to aN (A)x =0 and (5.6;2). Therefore detectability of
(z ) is equivalent to

ker aN(1) n Ker Cy = {0}

for every X € ¢ with Re 1 > 0. Analogously it follows from (5. 8)
that this condition is also equivalent to detectability of (t )‘

Statement b) follows from c¢) by duality and statement a) is
a special case of c¢) (put Co = 0) o
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In the special situation considered in Section 5.1 we can also
characterize controllability and observability of systems (zN) and
(zg') (compare Theorem 2.5):

Theorem 5.7. Suppose that r1 T see 2Py and that A01(t) z 0.
a) Let A ¢ ¢ be such that xN ¢ o((qN)'l N). Then » € o(AN) if and
only if det & (x) = 0. If xﬁ € o((q Y~ h ), then 1 € o(AN) if and
only if det Ap = 0. Moreover, a((A )*) = o(A ).
b) System (x ) is controllable if and only if

rank(a¥(1),By] = n for all 1 e ¢ ~o((Fd)71nY)

and

rank[Ap,Bol = n,

c) System (zN) is observable if and only if

N
rank [A (A)] = n for all ) € ¢'\o((£qN) 1hN)

Co
and

s n.
rank Ap

d) System (zg‘) is controllable if and only if

ranklAN(x),Bol = n for all re ¢“o((§qN)-1hN)
and

= n.
rank Ap

e) System (zg‘) is observable if and only if

rank [A (l)] = n for all A €. ¢'~a((£qN) 1hN)

and
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A
rank [Cp} 2 n.
0

Proof. Let X € ¢"0((§QN) th) or equivalently A— ¢ a((q ) 1hN).
Then (5.6) and (5.8) imply that both, ker(AI - AN) n ker CN = {0}

and ker(AI-(Ag)‘) n ker CV = {0}, are equivalent to
N
{0}, i.e. to rank IA (A)} = n,

ker AN(A) n ker C

0 C0
Now let X e 0((§qN) 1hN) Since AO1 z 0, we have A? K G 0,
J=1,...,p, k = 0,...,N. Assume first that rank Ap = n and let

x € ¢PPNHIN oicey (2@ -uN)x 2 0,1cV)x = 0. Then x satisfies

(5.5) with zq ° 0. Lemma 5.4,c) implies Xy = x.’N =0, J = 1,...,p-1.
By (5.5:31) we have Apxp Ny = 0, i.e. also X5 N 0. Now it follows

from Lemma 5.4,b) that x; =0 for j = 1,...,p and thus x = 0.

"<

Conversely, assume that ker(AI - AN) n ker CN = {0} and take

£ € ker A_. Then Lemma 5.4,b) implies that there exists a vector
. P (N+1)n r N N
X_ = col(x ) € ¢ such that [(Aﬁq -h )o.I)xp

P p,0°" " *¥p,N _
and xp N C E. If we define x, = 0 and x, = 0 for j = 1,...,p-1

0

-

0
then it follows for x = col(xo,xl,...,x ) from (5.5) (with 2

that (AQ -H yx=0, Chx = 0. By assumption this implies x = 0 and
thus £ = 0. We conclude rank Ap = n. This finishes the proof of
statement c).

0)

Still let X € 0((rq ) 1hN) Assume that ker A_ n ker C0 = {0}

and let x € ¢n+p(N+1‘ satisfy [XQN-(Hg)T1x= 0, (CN]x = 0. Then
(5.732) with j = p and Lemma 5.4,c) imply Apx0 = 0. This together
‘with Cox0 = 0 shows Xg = 0. Hence it follows by repeated use of
(5.7:2) and Lemma 5.4,c) that xJ.’0 =0, J =1,...,p. Finally we
get from Lemma 5.4,b) that x, = 0, j = 1,...,p, and thus x = 0,

Jd
i.e. ker(iI - (Ag)‘) n ker CN' = {o}.

Conversely, suppose that ker(xI-(Ag)‘) n ker CN = {0) and let

X, € ker A_ n ker CO' By Lemma 5.4,b) there exists a vector
a = °°1(°0""’°N) € ¢N*1 such that




(x§q“- t")T)a = 0 and ag = 1.

We define x,

N) c ¢n(N*1)
J

col(xJ 0,...,x

b ak(AI-— Ao)x0

1,k

xj,k z - akAJ._lxo
for j = 2,...,p and k = 0,...,N. Then it follows from (5.7) that
X = col(xo,xl,...,xp) € ker(AQN- (Hg)T)n ker[CN} By assumption this

implies x = 0 and hence x, = 0, i.e. ker Ap n ker C., = (0}. Thus

0 0

statement e) is proved.

Statements b) and d) follow from e) and c) by duality. The proof
of statement a) is the same as for c¢) with CN = 0 resp. C0 = 0o
Remark. Using similar consideration as above we can establish
the following partial generalizations of statement a) in Theorem

5.7: a) Suppose A é o((qN 1hN) for k = 1,...,p. Then X € o(AN)

if and only if det A (A) r

b) Assume A01(1) = 0. If det Ap = 0 then AT? € o((qN)-ihN) implies
N

A € o(A7).

We close this section with a very special result that guarantees
stability of (zN) for all N.

Propos1t10n 5.8. Let p = 1 and assume AOi(T) z 0. If
€ A0£ < - —|E|2 - -IA £l for all nonzero ¢ e R" , then Rex < 0
for every A € a(AN) and every N = 1,2,... .

Proof. Let )\ € o(A ) for some N and suppose that Re A > 0. Then there
exists a nonzero x € ¢n(N+2) such that (AQ -H Jx = 0. This implies
(observing the special form of HN)
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o
A

< (Re A )XTQ"x = Re(X H'x)

-T _ l'
Re(onoxo) + Re(x 1 1,N) + Re x4 X5,0 " 3i%5,0

[

=T 2 1,,T 2
Re(onoxo) + |x0| + §|A1x0l

if xo # 0. This contradiction shows Xq = 0. Therefore A% is an
eigenvalue of (q ) th, i.e. Rex < 0 by Lemma 5.4,d). This

contradiction proves the result o

5.3, Convergence of AN(A)

The results of the previous section illustrate the important
role which the coefficients a (u) play for the structural properties
of the approximating systems (z ) and (: *). So far we have
treated them only as implicit parameters whlch are given by
equation (5.2). In the following we derive explicit formulas for
the ag(u) and use those in order to prove convergence of AN(A) to

a(xr).

Lemma 5.9. a) Let the rational functions dﬁ(u), k = 0,...,N, be
defined recursively by

dg(u) = 2y + 3, )
dﬁ(u) = Y4y + ;%:EY—;’ k=1,...,N"1, (5.9)
k-1¥
2
dg(u) = 2p + 3+ _%:ﬁ___ .
dy-q (u)
Then cﬂ(u) is given by
k
N - 6(3-u)
W) = == (5.10)

ay_p (u) e e aedy(u)

for k = 0,...,N.




b) Let the polynomials pk(u), qk(“) of degree k+1 be defined
recursively by

Py(w) =1, polu) = 2ue3
Pp(u) = bup, _,(u) + (9-u2)pk_2(u), (5.11)
Qe(u) = (2ue3)p_y (w) + (9-ud)p, _,(w),

k =1,2,... . Then these polynomials are stable for all k and,
moreover, y € o((qN)'ihN) if and only if qN(u) = 0, If
u ¢=o((qN)-1hN), then
k
N 6€3~1) Py_tq (W)

uk(u) = (5.12)
QN(M)

ror k = O’...,N.
c) Let u # +ti/3, u e ¢, be given and let w satisfy

Wl = 9 + 3u2.

Furthermore put

70 = 2y + W, Yy = 2u - w,

Then u € o((q")"2nN) if and only if

(3+w) 2N - (3-0)%x N = 0,

ff v ¢ v((qN)-ihN) then

N~k N~k
u)k (3’")(70) - (3'")(71)

(5.13)
302 (N - G0

ay(u) = 6(3-

for k = 0,...,N.
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Proof. a) Suppose that the functions q, = dﬁ(u), k = 0,...,N,
are given by (5.9) and define i

b, = 228 | ¢ = 3TE. k- o1,...,N. '
k-1

Then it is easy to see that

1 ~-b, 0—0 d 0—0 1 0 —0
N | N
0 \\6 ? \\, ~cy '
6(uq ‘h ) = ‘\\\ _bl ‘\\\ 0 ?\\ 0 .
0—0 1 0—0 d 0—0 =-c, 1

0

It is not difficult to calculate the inverse matrices. Since uN(u)

is the first column of (ug -h")"! we conclude that
N - 60N-k+1."'.cN - 6(3-u)k
ak(") - d - d . °d s
N N~k °*° °N

k = 0,000,N.
b) If the polynomlals Py (u) and Qe (u) are given by (5.11) and the
rational function d (u) by (5. 9), then we see by induction that

N, .
a, (w) = pk(")/pk-1(")’ k = 0,...,N-1,

and

n

ap(u) = ay(u)/py_ ().

This implies

dg(u).o-c'dg(u)’ k = 0,..!,“‘1’
dglu)e.. -aN(u) = det(6(uq -nY)),

P (u)
k (5.14)

qu(u)




- e s — — -

Hence it follows from Lemma 5.4,d) that qN(u) is a stable
polynomial.

The considerations in the proof of a) together with (5.14) show
that p, (u) is the determinant of the matrix

f
3
; 3\\\\0l €¢(k+1)x(k+1) . :5

Hence it follows from analogous arguments as in the proof of
Lemma 5.4,d) that pk(u) is stable. Finally, equation (5.12) is an
immediate conseguence of (5.10) and (5.14).

c) Choose nw € ¢, u # +iv3, and define w, Qo and v, as in statement
¢) of the lemma. Then Yo # v, and

2 2 .
Yi - u"yi - (9'“ ) = 0, 1 = 0,1-

Hence yo'and v, are the characteristic roots of the difference
equation in (5.11). This implies that

P (#) = Fy )Nt - My K, (5.15)

k = =1,0,...,N-1. Using vy, = 12~ 9 we get from (5.11) and (5.15)

ay(#) = (2u+3dpy_ () + (9-u)p__,(w)

)

S e (N ¢ (9- 0 (v

(5.16)

- w3 (N + (9= 1wV | ;

2 2
(3+w) N _ (3-w)
- (yo) - AJOTW)

N
w7y
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This formula shows that u 1s in the spectrum of (q ) 1hN if and
only if (3+w) (yo)N - (3~ w) (Y ) = 0. Moreover, it follows from
(5.12), (5 15) and (5.16) that a (u) is given by (5.13) if

TR c((q )" 1N ) and u # ¢i/3 o

The explicit formulas in the previous lemma allow us to prove

that the matrices AN(A) actually converge to the characteristic
matrix A(2) of the delay system.

Theorem 5.10. Let A01(r) = 0. Then

a(r) = 1im AN(2), A e ¢,

N+

the limit being uniform on bounded subsets of ¢.

Proof. Fix 6§ > 0 and define w(u) by
w(u)2 = 9+ 3u2, Re w(u) > 0

for any u € ¢ with |u| < 6. Then the map u + w(u) is continuous

and w(u) + 3 is non-zero on |u| < 8. From w(u) -3 = WB: 73 We see
that

lw(u)=3] < |ul® if |u] < 6. (5.17)

In the next step we shall prove'that ag(%) converges uniformly

to e ™ on |u|] < cas N+ =, To this end we use formula (5.13)
for k = N and obtain with w = w(}), N > c&”

2 w+2 2 w-2k
- (3+w) N (3-w) NN
“N(ﬁ) T 12w (3_5 ) - 12w ( " > . (5.18)
N

From (5.17) and lim w(%) = 3 uniformly on |u| <c we see that

Noo
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(3+w(E))? (3-w(E))?
lim —_— 1 and lim 2
N+e  12uw(g) Nee  12w(g)
uniformly on |ul < c¢. Moreover, we obtain from (5.17) also
w2 w- 3+ (2)2
un:1+ﬁ+ N =1+';7*0('12)
N 3-5 N
and
1,u,2
w-2% w-3-3(g)
N _ Y 3°N - ] 1
S 1 - == + 1 + 5 + 0(=x)
¥ 3N _ N ]
3% 3% N

as N + = uniformly on |u| < c. These relations together with (5.18)
show
1im cg(%)-i = e
N+=
uniformly on |u] < c. Finally, the theorem follows from equations

(5.3) and (5.4) ©

It is our goal to prove that stability (resp. stabilizability
or detectability) of the original system (I) implies the corresponding
property for the approximating system (IN) provided N is sufficiently
large. The first step in this direction is the characterization of
these properties in Theormem 5.6 using the matrices AN(X). The
second step is the convergence result for AN(x) in Theorem 5.10.
In addition to these results we need a priori bounds for the unstable
eigenvalues of the matrices [ANI. This problem will be considered
in the next section. '
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5.4. Uniform bounds and nonuniform stability

We first establish uniform bounds for the ug(u) in Rex > 0.

Lemma 5.11. The estimate

N
IuN(u)|‘ 2

is valid for all u € ¢ with Reuw > 0 and all N = 1,2,... .

Proof. Since ag(u) is a proper rational function without poles

in Reu > 0 (c¢f. Lemma 5.9,b), it follows from the maximum principle
for analytic functions that laﬂ(u)l achieves its maximum value
in Reu > 0 on the imaginary axis. Therefore we only have to prove
lay(iw)| < 2 for all weR and all N.

We first consider ue iR with |u| >/3. In this case we have
lay | 2 [3-ul, k = 0,...,N-1, (5.19;1)
and
N :
lay )| > 3 (5.19;2)

for all N. The first estimate is obviously satisfied for k = 0.
Using

2lul > (9+ [ul$H¥2 = |3-4].

we obtain from (5.9) assuming that the estimate is already
established for k
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| Im dk+1(u)| (4 Im w - ——21131— Im d (u)l

Id (u) k

2 ‘

IR LN _
- . |dk(u)| L
2 (9+ul®H¥2, k= 0,...,N-2. ?

This proves (5.19;1). In order to prove (5.19;2) we note that
Re dﬂ(u) is always positive (and decreasing with respect to k) )
since

Re dy,, (w) = '21131—— Re d\ KW, k= 0,...,N-2. |
|d (W) [° ;

Therefore the last equation in (5.9) implies
N 9+ |u|? N
Re dN(u) = 3 + ——N—l—l——z Re dN'l(u) _>_ 3
lag., ()1
which proves (5.19;2). Now it follows from (5.19) and (5.10) that

lug(u)l = Z—iﬁ:ﬂl—-.. . |3'UL;; NS < 2.

ldo(u)l ) ld N 1(u)l lay () |

It remains to consider u € iR with [u| < /3. Let the complex
numbers w, Yor Yq be defined as in Lemma 5.9,c). Then

|2 1/2

w=(9-3]u € R

and'ﬁence
lvgl = fvql = 13-u]. (5.20)

This implies that there exists a . p € R such that 3




Using (5.20) and (5.21) we get from (5.13) that

2
N 2 3-u N 4w
lag(u)|© = 36| | ,
N Y (340 7= (3-w) P (vy 1y ) 2

= luuw2|(9+w2)(1-ei°) + 6w(1+ei°)i-2.

The identities

i :
l+e .81Nn o
= 1 -
1; T-cos o and |1-e

1°|2 = 2-2 cosop

l-e
imply for any a, b € R

la(1-eP) + b(1+el°)|2

= 2a2(1-cosa ) + 2b2(1+ cosp ).

Thereforg
|G§(N)|2 z 72w2[(9+w2)2(1-cOSp)+36w2(1+cos p)]-i
= 36w 1
(9+w )2'1 coso + 36w2 1+c05p- ’

2

because 6w < 9+w’a
Now we are in the position to prove the desired result on
stabilizability and detectability for the approximating systems

V.

Theorem 5.12. Suppose that AOl(r) 0. Then the following statements
are true:

a) If system (r) is stable, then there exists an N0 such that
system (r') is stable for every N 2 Nge

b) If system (I) is stabilizable (respectively detectable)




then there exists an N0 such that system (EN) is stabilizable
(respectively detectable) for every N > Ng- I

Proof. a) Suppose that (r) is stable. Then det A(A) # 0 on '
Re A > 0. It follows from Lemma 5.11 and equation (5.3) that

. N

it + B aeennie §2t e
for every A € ¢ with Rex > 0. Since AN Kk ° 0 for j = 1,...,p and }
k = 0,...,N, we obtain from (5.4) that det AN(A) £ 0 for every N
and every » € ¢ with ReA> 0 and |A! > w. Finally, the uniform
convergence result on bounded domains (Theroem 5.10) shows that |
det AN(A) # 0 for every re ¢ with Rer > 0 and |A| < w provided ;
N is sufficently large. Hence by Theorem 5.6,a) system (zN) is ‘
stable provided N is sufficiently large. This proves a). Statement
b) can be established analogously o

One might now ask the question whether stability of system (I)
implies stability of the approximating systems (ZN) uniformly
with respect to N, i.e. the existence of constants M > 1, ¢ > 0
such that

N
"e[A ]tIIN £ Me st: t >0,

for N sufficiently large (herell.llN denotes the operator norm
corresponding to the vector norm |x|N = x QNx on&ﬁn+p(N+1)n).

A result of this type would be needed in order to apply a result
of Gibson [21) concerning the approximation of the solution to the
algebraic Riccati equation. Moreover, the uniform stability has
been recently stated as a conjecture [ 8 ) for the spline
approximation scheme developed in [ 7 ]. Our result below shows that /
such a conjecture is definitely wrong for the approximation scheme ;
developed in this paper. This also indicates that it is wrong for
the spline approximation scheme in (7 ].
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Proposition 5.13. Suppose that there exist constants M > 1 and
N > 0 such that

Nexp((3a™) ey lly < Me N, ¢ > o, (5.22)
for all N. Then

EN = 0(;1-%7-?).

Herell-llN denotes the operator norm corresponding to the vector norm

]'xl2 = %XTqu onRV'1,

Proof. First note that

%xTx =< quNx < xTx, X e]RN+1,

and therefore

xx < xT () x < 6x"x, x eRV'L,

This implies for Xy = col(1,0,...,0) ‘and u € iR (ef. equation (5.2))

N
N 2 N 2 _ N .N.,-1 2
kzo la ()| < 6N|a (u)lN = 6N (ug =h") "xly

= 6N Ié e ut exp((%qN)-ihN %)(qN)°1xodt|§

t
N.- ® =g =
= 6NM2I(q ) 1xolﬁ (g e N th)2
_ 6NOM?,, N\-1_ 2 _ 6N°M% _T, N.-1
= a2 @) Txoly T o %ola) g
13k

=82~

=g

[ -

R e o e gy e e e




Therefore

N

ey < 6NM (] layu)|?)71/2 (5.23)
. k=0

for all » € iR.

Now let wu e iR satisfy |u| < /3 and define the complex numbers
W, Yg» Y, a@s in Lemma 5.9,c). Then w = Y9-3[ul2 € R and

Iyol z lY1| = |3~ u|. Hence there exists a & > 0 such that
Y
Ao i
Yo

This together with (5.13) yields

(miuyoikE (2
o) ()12 = 36l Btu) 7 Gowle L

| (34w) = (3-w)e™"°|

9{(1-cos kd) + w2(1+cosk6)

(9+w5221-cosN6)+ 36w2(1+cosN5)

:36

for all e iR with Ju| < v/3. Since 6§ = §(u) and & + 0 as

w+ i/3, |u] < /3, we can choose a sequence uy € iR, lugl < 3,

. } 2 . .
such that uy -+ iv/3 and sy = §Cuy) i - The identity

Y
. 1 2u=w 4 Imu
siné§ =Im ~— = Im =W

shows that for positive constants Cys Cp

¢ c
1 2
S S for all N.

From these facts we get

e v——— —




N N N
N 2 9 2kn 1 2kn
1 lag(u) | = I (1-cos S~) + 5§ (1+cos S3-)
k=0 KN 2w2 k=0 N7 2 s N
s 25 (N-1)
2wy
2> const. N3,
N 2kw
where we have used ] cos N~ < 2- This last estimate
k=0

and (5.23) show that
€,, < const 1 o
N - ° N172

~ The above result shows that exponential stability uniform

with respect to N is in general impossible for our scheme - at
least if Ap = 0 and A01(r) z 0. Numerical studies sho: ;hfg ;here
is a sequence AN’ N=1,2,..., of eigenvalues Ay € o((ﬁq ) "h)
such that Re A
indigate Re AN = 0(35) for this sequence. In the general case where
o((%}qN)-ihN) is nog part of a([AN]) numerical studies still show
the existence of a sequence Ay» N = 1,2,..., such that Ay € o([ANl)

with Re Ay < 0, Re Ay + 0 and Im 2

N 0 and Im AN + o, In fact, the numerical results

N

> o,

N N
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6. Numerical results

The spline algorithm developed in Section 4.3 of this paper t
was applied to a large number of examples. In this section we '
present the numerical findings for some of those examples. The
numerical results confirm the theoretical results in case of the \
finite time horizon problem. Despite the fact that we cannot
prove convergence of the scheme for the infinite time horizon ﬁ
problem using the theory developed in [21] (as pointed out in }
Section 5.4) the scheme performs also very well for this class
of problems. This is shown by some examples which already have
been considered in the literature (8 ].

6.1. Examples with finite final time

Here we present examples where the true soclutions of the
control problems are available.

The suboptimal feedback law (4.37), which is governed by the matrices
ng(t),ng(t),...,ngN(t), is calculated using the algorithm presented
at the end of Section 4.3 (cf. (4.39) - (4.43)). The controls
ﬁN(t) and corresponding trajectories iN(t) where calculated by
integration of

d

2 Mgy = L(i?) - BOGN(t),

where GN(t) is given by (4.43). This delay system was solved by
a modified Runge-Kutta procedure.

Example 6.1. This is the problem of minimizing

3
J) = $x(3)° 5 ] uerar




subject to

x(t) = x(t-1) + u(t), 0 <t <T =3,

o0 = 220y, otct) = 1.

For this example we have n = 1, A01 O, p =1, A0 = 0, A1 = B0 =1,
C° =0, G0 = % and R = %. The optimal controls, trajectories and

costs were calculated in [ 5] using the maximum principle and j
are given by !

( -'%[(t-2)2+3), 0 <t <1, |
g(t) = { &(t-3) » 1 <t <2, g
( —§ ’ Z:t:B’
( 14t- a[3t +3 (- ~2)3,3 3, 0ct <1,
%+EE-6[4+E(t-1) +§ﬁ(t-3)u+£(t-1)—l(t-3)2], 1<t<2,
%e) =12 2 =5
547 S P 3 1 3 5
~6123L + 5(8-2)+2(£-2)2 43 (1-2) -3 (e-1) P d5(e-1)°,
| 2 <t <3,
J(Q) = %252 82

- 185
where § 329 -

The numerical results we obtained are presented in Tables 6.1
and 6.2.

-86~-




-87=-

e ) ey | s u(t)
0 | -1.9694 | -1.9676 | -=1.9679| -1.9681
0.25 | -1.7049 | -1.7049 | -1.7043 ] -1.7045
0.5 -1.4740 | -1.4758 | -1.4760 ] -1.4761
0.75 | -1.2817 | -1.2824 ) -1.2828} -1.2828
1.0 | -1.1267 | -1.1252 | -1.1250 | -1.1246
1.25 { -0.9882 | -0.9832 | -0.9846 | -0.9840
1.5 -0.8410 | -0.8448 | -0.8445 | -0.8435
1.75 | -0.6922 | -0.7002 | -0.7050 | -0.7029
2.0 | -0.5885 | -0.5769 [ -0.5704 | -0.5623
2.25 | -0.5572 | -0.5611 | -0.5623 5
2.5 | -0.5620 { -0.5623 | -0.5623 |
2.75 | -0.5623 | -0.5623 | -0.5623 ]
3.0 | -0.5621 | -0.5622 | -0.5623 | -0.5623
J(Q) | 1.7338 | 1.7338( 1.7338 | 1.7338
Table 6.1
2t is(t)i 20) | w(e)
0.7914 | 0.7916{ 0.7916 | 0.7917
0.6448 0.6U448 0.6448 0.6448
0.5511 | 0.5506| 0.5507 { 0.5507
0.5007 | 0.5005| 0.5005 | 0.5005
0.4589 | 0.4593| 0.4595 | 0.4595
0.4083 ] 0.4096| o0.u094 | o0.s094
0.3655{ o0.3642| 0.3646 | o0.3646
0.3375 0.3372 0.3371 0.3370
0.3159( 0.3167( 0.3168 | 0.3168
0.2845 0.28u8 0.2848 0.2849
0.2403| 0.2407( 0.2408 | 0.2408
0.1874 | o0.1874| o0.1874 | o0.1874
Table 6.2




1
and t = 2 compared to other points in [0,3] because there u(t)
has jumps in the derivative whereas &N(t) is continuously
differentiable on (0,3]. In Table 6.2 we didn't include the
values for t = 0 because always X '(0) = %(0) for our algorithm.

We observe that the error IGN(t)-u(t)l is larger around t =

We have to minimize

Example 6.2.

2

1 2 2, . 1 2 2

J(u) = 2(x1(2) + x2(2) ) + 5 é (ul(t) uz(t) ydt
subject to

. _ 0 o - 1

x(t) = (1 o]x(t 1) + (0 1]u(t), 0 <t <2

o0 = o1y, o1ty = [1].

. (o 1 0

We have n = 2, p =1, Ay, =0, Ay = 0, A, = [1 8], B, = [0 1],
Co = 0 and G =R = %[ . Again the solution of this problem was

obtained in [5 ] and is glven by

w+d(1-t), 0 <t <1, .
g, (t) = uy(t) = &, 0<t <2,
u, 1<t <2,
1+t -3(t-1)2+ 8, 0t <1,
- - 2 2 - -
xi(t) - 6 i
1+ (148)t, 0 <t <1, %
X (t) = 2 4 (1+26)(t~1) + B(2-1)2-B(£-2)7 425, 1 <t < 2 1
2 2 [ 6 -7 = %2 i




£

SN adey oy | ale| me

0 -1,0608} <-1.0601 | -1.0603 | -1.0598

0.25 |-0.8495| -0.8407 | -0.8428 | -0.8419

0.5 -0.6197! -0.6260 | -0.6256 | -0.6239

0.75 |-0.3890} -0.4018 | -0.4092 | -0.4060

1.0 -0.2284| -0.2107 | -0.2007 | -0.1880

1.25 -0.1799 -0.1861 -0.1881

1.5 -0.1873| -0.1880 | -0.1880

1.75 }-0.1879] -0,1880 | -0.1880

2.0 -0.1878 -0.1880 -0.1880 -0.1880

NG ﬁg(t) ﬁg(t) ﬁ;6(t) T,(¢)

0 -0.8713| -0.8717 -0.8718 -0.8718

0.25 |-0.8713| -0.8717

0.5 -0.8712} =-0.8717

0.75 |-0.8715| -0.8718

1.0 -0.8718

1.25 1-0.8718

1.5 -0.8719

1.75 |-0.8718

2.0 -0.87168 -0.8718 |- -0.8718 -0.8718
(21

J(u) 1.4018 1.4017 1.4017 1.4017

Table 6.3




N e | e | e | R

0.25 | 0.76100 | 0.76192 |0.76229 |0.76229 !
0.5 0.57691 | 0.57927 | 0.57908 | 0.57906 M
0.75 | 0.45142 | 0.44963 | 0.45038 | 0.45032 |
1.0 0.37648 | 0.37640 | 0.37621 | 0.37607

1.25 | 0.32751 | 0.32893 | 0.32905 | 0.32906

1.5 0.28184 | 0.28198 | 0.28204 | 0.28504

1.75 | 0.23474 | 0.23498 ] 0.23503 | 0.23504 ‘
2.0 0.18781 ¢ 0.18799 | 0.18803 | 0.18803 .
) | % % 33(t) 38ty | %00

0.25 |1.03216 i 1.03207 | 1.03205 | 1.03205

0.5 |1.06433 | 1.06414 | 1.06411 | 1.06410

0.75 |1.09647 . 1.09619 | 1.09616 | 1.09615

1.0 1.12855 : 1.12823 | 1.12820 | 1.12821
,1.25 11.12961  1.12939 | 1.12940 | 1.12941

1.5 1.07768 . 1.07797 | 1.07799 1.077995

1.75 {0.98704 . 0.98747 | 0.98757 ! 0.98758 |

2.0 0.87175 | 0.87177 | 0.87179 | 0.87180 °

Table 6.4

«-90~-




6.2. Examples for the infinite time horizon problem

Despite the fact we cannot prove convergence of our scheme
for the infinite time horizon following the ideas of Gibson [21]
the algorithm seems to behave very well also in this case. The
following examples show that it should be possible to prove
convergence of the operators nN to I in the uniform operator
topology. Here nN restricted to xN (on (XN)l we have HN = 0) is the
solution of the algebraic Riccati equation

N N N

(aNyenN 4 oNaV - gNpr~lpen®

B*n” + C*C = 0 (6.1)

and T is the solution of (3.21). Taking matrix repesentations
for the operators equation (6.1) takes the following form
(cf. also (4.38)):

1,.N,T

(8N Tl

taNys 1)+ 1oVi0aNy) - (fMieMiRT ]

¢ (cMTieNy = o
Analogously as in case of equation (4.38) we define
N = QN
and get the Riccati matrix equation
(a1 TeN 4 eV (6.2)

N.T N

- tNeNR BN TN 4 (N T N

] = 0.

Using nN instead of N in the feedback law (3.24) we get by
analogous computations as in (4.4%)

0

A H?(t)&(t+r)dr},t > 0, (6.3)

V) = -R-lBg{ngiN(t)+

-9]1-

N



N
where H?(T) = § ) (nﬁj)TekJ(t) and

k=1 j=0

( N . )
Ty * ...
N

(N1 = | Mo

N
“ * *

\ PN J

(compare (4.42) and (4.43)). The numerical results clearly show
“anN- m{| > 0 as N + », Thus there should be a way to prove this
convergence without having uniform exponential stability for the
approximating problem.

For the examples (6.2) was solved using tne Newton-Kleinman-
algorithm as presented in [(34], for instance. The Ljapunov matrix
equation which has to be solved in eazh step of the Newton-Kleinman-
algorithm was solved using the quadratically convergent procedure
given by R.A. Smith [39] (see also (341, p. 297). The

approximating controls ﬁN(t)and corresponding trajectories iN(t)
where calculated as for the examples in Section 6.1. The following
examples were already considered in [ 8 ] where the approximation
was done using the spline scheme developed in {7 }.

Example 6.3. This is Example 4.1 in [ 8 ] and considers the
minimization of

/ (x(t)2 + u(t)?)at
0

J(u)

subject to

x(t) = x(t) + x(t-1) + u(t), t > 0,

00 =0, oi(t) = sinwt, -1<t <0,
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In this case we have n = p =

1, A, =
O -~
Table 6.5 we give the values for J(uN) and the optimal costs

N - <anN(00,¢1),PN(¢0,¢1)> for the approximating systems (IN) |
with cost functional (4.33). '
N | s N |
|

4y 0.321439 0.321430
8 | 0.321439 | 0.321432 i
16 0.321439 0.321430 )
|

Table 6.5

In Table 6.6 we show the values for T
range I c dom A* (cf. Proposition 3.4,b)), we have
(H1°0°)(-1) for all 00

€ lﬁn. Therefore we should have

and “1N’ Si

N N
N N
N | Ty TN
4 | 2.80886 | 2.77538
8 2.809328 | 2.80096
16 2.809390 ] 2.80729
32 | 2.809396 | 2.80887
Table 6.6

In Table 6.7 we give the valuesfor»nN(t), which governs the
distributed feedback in (6.3),.at the knots -%, j = 0,...,N, for
N = 4, 8, 16 and 32. We clearly see that T, (r) converges uniformly
on -1 <t <0as N » =,

Q3=




. . . — v
TIENE G e e S
0] 0.63598 | 0.63683 | 0.63694 | 0.63696
1 - - - 0.66132
2 - - 0.68698 0.68764
3 - - - 0071558
4 - 0.74240 | 0.74512 | 0.74553
5 - - - 0.77722
6 - - 0.81040 | 0.81114
7 - - - 0.84695
8| 0.87064 | 0.88269 | 0.88474 | 0.88517
9 - - - 0.92547

10 - - 0.96750 | 0.96839

11 - - - 1.01361

12 - 1-05757 1-06113 1.06165

13 - - - 1.11225

14 - - 1.16491 1.16591

15 - - - 1.,22238

16| 1.26664 | 1.27879 | 1.28151 1.28218

17 - - - 1.34508

18 - - 1.41048 | 1.41162

19 - - - 1.48157

20 - 1.54972 1.55463 | 1.55547

21 - - - 1.63314

22 - - 1.71381 1.71512

23 - - - 1.80125

24] 1.86588 1.88693 | 1.89104 1.89209

25 - - - 1.98748

26 - - 2.08649 | 2.08802

28 - 2.29692 2.30348 | 2.30477

29 - - - 2.42147

30 - - 2.54253 | 2.54432

32) 2.77538 | 2.80096 | 2.80729 | 2.80887

Table 6.7




With respect to ﬂg the behavior of the scheme presented in [ 8]

is comparable to the performance of our scheme. But with respect
to approximation of the feedback kernel our scheme behaves

much better (compare Figures 4.1 - 4.4 in [ 8)). Our scheme

seems also to be more accurate as far as approximation of

J(u) by JN(GN) and JV is concerned. In Tables 6.9 and 6.9 we
present the values for 4 (t) and X'(t) on 0 <t < 4 and 0 <t < 3,
respectively, where ﬁN(t) is given by (6.3) and iN(t) solves
L) = 1 + BN, (x€0),%3) = (+%,61).

616

4 at ey a8e) (t)

0 0.86836 | 0.86817 0.86816
0.25 0.64894 | 0.64891 0.64891
0.5 0.49650 0.49657 [0.49658
0.75 0.35400 0.36400 0.36401
1.0 0.24627 0.24618 10.24618
1.25 0.16154 | 0.16146 | 0.16146
1.5 0.10999 | 0.10993 |} 0.10993
1.75 0.08024 | 0.08021 0.08021

2.0 0.06015 0.06015 | 0.06015
2.25 0.04348 | 0.04347 0.04347
2.5 0.02983 | 0.02982 0.02982
2.75 0.01996 0.01995 | 0.01995
3.0 0.01373 0.01372 0.01372
3.25 0.00991 0.00991 0.00991
3.5 0.00729 | 0.00729 {0.00729
3.75 0.00524 { 0.00523 |} 0.00523
4.0 0.00362 L70.00362 0.00362
Table 6.8

=95




N e | e | e
0.25 0.11259 | 0.21258| 0.11258
0.5 0.05332 | 0.05331| 0.05332
0.75 | -0.06628 | -0.06626| -0.06626
1.0 -0.10850 | -0.120846) -0.10846
1.25 |-0.06160 {-0.06158| -0.06158
1.5 -0.01397 {-0.01397] -0.01397
1.75 0.00753 | 0.00752] 0.00752
2.0 0.00178 | 0.00178} 0.00178
2.25 |-0.00784 | -0.00784} -0.00784
2.5 -0.01030 { -0.01029) -0.01029
2.75 $-0.00646 |-0.00646! -0.00646
! 3.0 -0.00178 | -0.001781 -0.00178
Table 6.9

Example 6.4, This is a model for the Mach number control loop
for the National Transonic Facility at NASA's Langley Reserach

Center. For details see (2] or (8 ). The problem is to
minimize

J(u) = [ (xT(6)CECox(t) + ud(t)]at

: 0

subject to

. -a 0 0 0 ka 0

x(t) = 0 0, 1 x(t) « [0 0 Of{x(t-0.33)

0 -u ~2¢&w 0 0 O

o (6.4)
+ [Oz]u(t), t >0,
W

o0 = c01(-0.1,8.547,0) = ¢2(t), -0.33 < t < O.
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We have C0 = (100,0,0), n= 3, p = 1, k = -0,0117, & = 0.8,

w = 6,0 and % = 1.964. Because of the simple structure of this
problem it is possible to calculate the true solution following
an idea contained in {29]. If we put for t > O

yi(t) z xl(t+h), h = 0.33,
yz(t) s x2(t)’
y3(t) = x3(t),

we obtain by a simple c¢alculation

¥, (%) -a ka 0 fyi(t) 0
Ll =0 o 1 |lze)]+ o] uw) (6.5
¥3(t) L 0 -w2 -2&w (yB(t) w2

The cost functional takes the form

h -
3 = 10" [ x(e)%as ¢ [ 120"y, (9)% vu(e)®1ar, (6.6)
0
where
. v
xl(t) = e-at¢g + ak [ e-a(t-t)Q;(t'h)dt, (6.7)

0
0<t=<h,

is not dependent on u(t) on the interval [(0,1]. Therefore
minimizing J(u) subject to (6.4) is equivalent to minimizing

"yi(t)z + u(t)?as

J(u) = f (10
. 0
subject to (6.5) with initial data

yl(o) = xi(h)’ yz(o) s xz(o)’ 33(0) s 83(0). (608)
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The solution of the latter problem is given by the feedback law
- - 2.\ -
u(t) = - (0,0,w0 )noy(t),

where y(t) is the solution of (6.5) with u(t) = Q(t) and initial
data (6.8). ﬁo is the solution of the algebraic Riccati equation

A'n, + nA - i.B.B.N, + C.C. = O, (6.9)

where

- -a ak 0
A= 0 02 1 .
0 -0 =2fw

Equation (6.9) was solved numerically to give

8220.51099 -11.61086 -1.12107
n, = |-11.61086 0.01851 0.00186 .
-1.12107 0.00186 0.00019

The optimal costs for the original problem are given by

h
R AGE T
0

- h
F ()i F(0) + 10" [ %, (t)%a¢.
0

J(B) = J(F) + 10

(6.10)

Using (6.7) it is easy to calculate J(U). In Table 610 we give

the values for J(u), J(ﬁN) and JN = <anN(oo,¢1),pN(0°.01)>-

N | @ L

b 1136.39587 | 136.40499
8 ]136.40094 | 136.40509
16 ]136.40250 | 136.40521

J(u) 136.40490

Table 610

P aare




-

Using (6.10), (6.8) and (6.7) we get by some calculations
: for general initial data (00,01)

e”8h g 0)- e

-ah
0 0 _.2ah {1 0 © j
J(U) = (¢°)T{lo 1 0{n,|0 10 +1o"-l-2—:—— 000 }00
0 o 1) “|o 0 1 000
-ah 1
e 0 _fo 1 0) o
+ 2ak(09)To 1 m,j0 0 o) e?Te(v)ax :
0 o 1) “lo o of -h f

0
104ke'ah(¢°)Tlo
0

+

oOoOor r»roo

0
i (e-ar-eat)ol(t)dr

+

0 000 (010
2%k [ e® (o2 (+))Tax|1 0 0 no[o 0 o]
o 0o} %o o o)

0
[ %ol (1)dr
-h h

+

0 T
10ua2k2<¢;(°), I e“a(T"') I e"a('l'-o) 1
: -h

On the other hand we have

0 1 1

+ 2(¢°)TH010 + <¢ ,n11¢1> P

J(@) = (oo)Tnoo¢
L

Comparison immediately gives

e o o). (e 0 o 4 1-e-28h {1 0O o]
mo=lo 1 ofijjo 1 of+120"if_—— 1o o of,

fi 0
0 {6 o0 1% 0 o0 1 a o 0 o
. e 0 o). (0 1 0 0 .,
LU R aklo 1 o(mfo 0 0] [ e To7(r)ax
o o 1) %o o o) -h
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n,(e) =
-h < 8 < 0. Furthermore, we get after some calculation

(niloi)(e) = azkzeae[l 0

In Table 6.11 we present the values for ng

Table 6.12 we show the values for the second row of
N, .h .h . L

"1( jg) and ﬂl(-Jﬂ) for j = 0,..

00
aki1 0
00

+

0 e-ah
i

0 0

00
o0

000) 0 _-aljt-e]|__a(r+8)
ak®{0 1 0| [ & — +1(t)dr, -h < <0.
0 0 0f-h

matrices are always zero.

00 _.nf000) -ae__ae
1 0le2®+ 10"%e™2"|1 0 0 5——5—3—— ,
01 000

0). {01 0) 0
o|fig|o 00 f e*Tet(r)ar
oj °lo 0o} -n

and in

and noo

«s4. The other rows of these

N ng
(8677 .02417 -9.81502 -0.94768)
4 j|~9.81502 0.01851 0.00186
|-0.94768 0.00186 0.00019 |
(8677.02698 ~-9.81505 -0.94768)
8 |{-9.81505 0.01851 0.00186
|-0.94768 0.00186 0.00019 |
(8677.03516 -9.81506 -0.94768)
16 ||-9.81506 0.01851 0.00186
\-0.94768 0.00186 0.00019 |
(8677.02405 ~9.81505 -0.94768)
“oo -9.81505 0.01851 0.00186

Table 6.11




J n:(-%)

0 ! -41.39697 0.06916 0.00668
1 | -43.83789 0.06652 0.00640
2 | -46.37943 0.06334 0.00613
3 | -48.97898 0.06118 0.00590
4 | -51.69006 0.05828 0.00563
j n8(-dh,

1
0 | -41.39721  0.06917 0.00668
1 | -43.84998 0.06626 0.00640
2 | -46.38019 0.06355 0.00614
3 | -48.99226 0.06093 0.00588
4 } -51.69080 0.05843  0.00564
K nié-ih

0| -41.39727 0.06917 0.00668
1] -43.85012 0.06631 0.00640
2| -46.38036 0.06358 0.00614
3| -48.99246 0.06097 0.00589
4| -51.69102 0.05846 0.00564
j n, (-42)

o] -41.39721 0.06917 0.00668
1| -43.85008 0.06632 0.00641
2| -46.38034 0.06360 0.00614
3| -48.99246 0.06098 0.00589 |
4| -51.69103 0.05847 0.00565 ;

Table 6.12
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